
eTryOn - Virtual try-ons of garments enabling novel human
fashion interactions

Project Title: eTryOn - Virtual try-ons of garments enabling novel
human fashion interactions

Contract No: 951908 - eTryOn

Instrument: Innovation Action

Thematic Priority: H2020 ICT-55-2020

Start of project: 1 October 2020

Duration: 24 months

Deliverable No: D2.2

First working version of the
avatar-garment simulation software

Due date of
deliverable:

30 November 2021

Actual submission
date:

8 December 2021

Version: Final

Main Authors: Metail

Ref. Ares(2021)7643067 - 10/12/2021

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Project funded by the European Community under the
H2020 Programme for Research and Innovation.

Project ref. number 951908

Project title
eTryOn – Virtual try-ons of garments enabling novel
human fashion interactions

Deliverable title First working version of the avatar-garment simulation
software

Deliverable number D2.2

Deliverable version Version 1.0

Contractual date of
delivery

30 Nov 2021

Actual date of delivery 8 December 2021

Deliverable filename eTryOn_D2.2.docx

Type of deliverable Demonstrator

Dissemination level PU

Number of pages 55

Workpackage WP2

Task(s) T2.1-T2.4

Partner responsible Metail

Author(s) Dongjoe Shin, David Gavilan, Robert Boland, Jim Downing
(Metail)

Editor Elisavet Chatzilari (CERTH)

Reviewer(s) Thomas De Wilde (QuantaCorp)

Abstract In this deliverable the basic working version of the
avatar-garment simulation software will be provided in order
to be used for iterative testing.

Keywords 3D garments, Vstitcher Browzwear, Simulation algorithms

Filename: eTryOn_D2.2.docx Page 2 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Copyright

© Copyright 2020 eTryOn Consortium consisting of:

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS
(CERTH)

2. QUANTACORP (QC)
3. METAIL LIMITED (Metail)
4. MALLZEE LTD (MLZ)
5. ODLO INTERNATIONAL AG (ODLO)

This document may not be copied, reproduced, or modified in whole or in part for any
purpose without written permission from the eTryOn Consortium. In addition to such
written permission to copy, reproduce, or modify this document in whole or part, an
acknowledgement of the authors of the document and all applicable portions of the
copyright notice must be clearly referenced.

All rights reserved.

Filename: eTryOn_D2.2.docx Page 3 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Deliverable history

Version Date Reason Revised by
1.0 08/10/21 Table of Contents Robert Boland

1.1 29/11/21 Initial version Robert Boland, David
Gavilan, Dongjoe Shin

1.2 05/12/21 Comments by Thomas De Wilde
1.3 07/12/21 Revised version Robert Boland
2.0 08/12/21 Final version Elisavet Chatzilari

Filename: eTryOn_D2.2.docx Page 4 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

List of abbreviations and Acronyms

Abbreviation Meaning
VS VStitcher
BW Browzwear
PBS Physics Based Simulation
CLI Command Line Interface
DL Deep Learning
ML Machine Learning
CNN Convolutional Neural Network
GCN Graph CNN
KNN K-Nearest Neighbors algorithm
IoU Intersection over Union
RoI Region of interest
DB Database
BMI Body Mass Index
ND Neural Dynamics
ABC Alembic (file format)
FBX FilmBox (file format)
PCA Principal Component Analysis
DRAPE Dressing Any Person
LSTM Long short-term memory
BERT Bidirectional Encoder Representations from Transformers
QC Quality Control

Filename: eTryOn_D2.2.docx Page 5 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

List of Figures
Figure 1. Garment PBS in Vstitcher: 2D cutting patterns are arranged around the associated body parts
(left) before running PBS, which will find the new settling position of a garment using many textile physics
parameters (right) 10
Figure 2. Baking body animation 11
Figure 3. Garment skinning at T-pose 13
Figure 4. Example of garment skinning at an arbitrary body pose 13
Figure 5. Our garment animation uses particle animation on top of the skeleton animation of a garment to
capture the dynamic local movement of a garment 14
Figure 6. example of GarNet based garment deformation model 17
Figure 7. Example of garments used in our DB, sample animation, GIF images from 3 different viewing
angles automatically generated for manual QC process 20
Figure 8. Some examples of a tracksuit Snapchat filter, where the garment was simulated on an average
male body shape. 21
Figure 9. Average male body shape (left) vs Snap body mesh (right) 22
Figure 10. Comparison of the tracksuit Snapchat filter using the average body shape (left) vs using Snap
body mesh (right) 23
Figure 11. Original tessellation in Snap body mesh (left) vs our retopologized mesh 24
Figure 12. Our Rens avatar with increased tessellation in VStitcher 24
Figure 13. Some examples of a tracksuit Snapchat filter, where the garment was simulated on the latest
Rens avatar. 25
Figure 14. Bad case of Z-fighting, caused by the triangles of the occluder mesh sharing positions with the
garment mesh. 25
Figure 15. Tracksuit dressed in A-pose (left) and then reposed after skinning to a T-pose (right). Note that
some triangles intersect the arms. 26
Figure 16. Video of Odlo garment virtual try on Snapchat filter 27
Figure 17. Example user interfaces for particle-based garment simulations; Unity cloth simulation (top) and
Obi-cloth (bottom) 29
Figure 18. Particle parameters in Obi-Cloth which can control local garment movements 29
Figure 19. Examples of the vertex movement from a body motion; garment-to-body distance at resting
position (top); the vertex movement in the chest area over time (middle); the vertex movement in the thigh
area over time (bottom) 31
Figure 20. Examples of the heatmap for garment vertex movement (left); the algorithm creating the vertex
movement probability (right) 32
Figure 21. Overall conversion process to create an Obi parameter image from the probability values 32
Figure 22. Cost functions used in our Obi parameter optimization and their performance with different
samples. 34
Figure 23. An example of optimisation process: estimated costs over each iteration (left) and the parameter
values used in each iteration (right) 35
Figure 24. Result from Obi parameter optimisation: the worst result in the early iteration (top, highlighted in
green), the final optimisation result (bottom, highlighted in blue) 36
Figure 25. Overall data pipeline for Obi parameter optimisation process, where manual processes are
highlighted in purple. 37
Figure 26. Sample character provided in Apple’s Body Tracking sample 38
Figure 27. Apple body tracking with the provided character (left) and with our first attempt to import our
avatars (right) 40
Figure 28. Rotation of spine axis (left) to obtain the right shoulder axis (right) 41
Figure 29. Apple body tracking example with one of our avatars (left) and with one of our garments (right) 41
Figure 30. Naive attempt to convert the Apple ARKit avatar model to Unity ARKit. 42
Figure 31. Unity ARKit body tracking example with one of our avatars (left) and with one of our garments
(right). Note that there are still issues with the forearm. 42
Figure 32. Prototype showing the DressMeUp input and output 43
Figure 33. Photo Composition Flow Diagram 44
Figure 34. Close up of current prototype output 45
Figure 35. Completed Assessment Sheet 46
Figure 36. Browzwear’s parametric avatars (previous vs current generation) 49
Figure 37. VStitcher’s animation workspace 49
Figure 38. Exporting alembic files from VStitcher 50

Filename: eTryOn_D2.2.docx Page 6 of 55

https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.17dp8vu
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.lnxbz9
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.z337ya
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.z337ya
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.4i7ojhp
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.2xcytpi
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1gMZa5Vck_xFULbDRV9fgKKfaCf4ymNmH/edit#heading=h.1pxezwc

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Table of Contents

List of Figures 5

Table of Contents 7

1. Executive summary 9

2. Introduction 10

3. Cloth Simulation 12
3.1 Physics based garment simulation in Vstitcher 12

3.2 Real time garment simulation in game engines 13

3.2.1 Skeleton based simulation 14

3.2.2 Particle based simulation 16

3.3. Data driven garment simulation 17

3.3.1 Neural dynamics 17

3.3.2 Garment DB for Neural Dynamics 20

4. Snapchat Filter 23
4.1. New avatars for Lens Studio (Rens) 23

4.2 Avoiding Z-fighting 27

4.3. Demo - Lens using new Odlo garments (Scott MTB) 29

5. Magic Mirror 30

5.1 Overview of the application and required backends 30

5.2 Cloth sim optimisation 30

5.2.1. Obi parameter images 32

5.2.2. Obi parameter optimisation 35

5.3 Body tracking in the Unity application - Skeletal differences in ARKit 39

5.3.1 Apple ARKit 39

5.3.2 Unity ARKit 43

6. DressMeUp 45

6.1 Overview of the application 45

6.2 Existing Progress and Manual Test 45

6.3 Evaluating the output of the Manual Test 47

6.4 Evaluation framework for automatically composed images 48

6.5 Next steps - automatic pose detection and warping 49

7. VR Designer 50

7.1 Garment simulation in VR Designer application 50

7.2 Using Browzwear’s new ‘realistic avatars’ to export animation 50

Filename: eTryOn_D2.2.docx Page 7 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

8. Conclusion 53

9. References 54

Filename: eTryOn_D2.2.docx Page 8 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

1. Executive summary
The objective of eTryOn’s WP2 is to investigate and develop an automatic, cost-effective
and systematic method to fit digitally-designed garments to the 3D avatars generated in
WP1. As such the objective consists of both:

● Generating a collection of digital garments
● Automatic fitting of the digital garments in both still images (DressMeUp app) and

in real-time (MagicMirror app)

At a high level, the goal can be described as creating realistic visualisations of 3D
garments on a person's body. These visualisations need to be rendered in software
accessible to end users.

The current deliverable builds on the research delivered in D2.1 and uses the garments
created in that deliverable to create a first working version of the avatar-garment
simulation software.

Section 3 describes in detail the core innovation in the avatar-garment simulation work.
We have achieved many targets in this innovation objective and describe that in detail in
this document. We explain how we use VStitcher animations as a ground truth to model
cloth simulation in Unity-Obi. We identify vertex movement of the garment for a given
animation and then use Nevergrad optimisation to work out the optimal Obi parameters
for that garment on a given avatar. Combining this with the body tracking described in
sections 4 (for Snapchat) and 5 (for Unity) allowed us to create initial working versions of
the MagicMirror app. The detail of the difficulties encountered and solutions to these
issues is provided in this deliverable.

As well as the MagicMirror (in sections 4 and 5), we also describe the progress of the
DressMeUp (section 6) and VR Designer (section 7) applications. In both of these
applications we have successfully created an end-to-end prototype. In the DressMeUp
app, we have taken the scans from WP1 and integrated them into our pipeline. As part
of this process we have identified some of the current limitations around avatar-garment
alignment. We have built a framework for evaluating the results and will use this to target
improvements over the next few months. In the VR designer app, we explain the
decision to directly use VStitcher animations for best results and the next steps to
integrate more realistic looking avatars into that application.

Filename: eTryOn_D2.2.docx Page 9 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

2. Introduction
In the previously completed deliverable (D2.1) we described both the process of creating
a 3D garment collection and our first research into how to take these assets and produce
realistic simulation on an avatar. In this deliverable, we have furthered this research and
created the first working version of the avatar-garment simulation software.

In the eTryOn Project we are developing three different applications, all of which provide
innovative ways to interact with avatars and virtual garments. Although the interaction
environment and requirements are different for each application, they all start from the
same base - digital 3D garments which have been designed for production using
professional 3D design software (Browzwear’s VStitcher in our case). These garments
are then transformed into a compatible form for each application. In this document we
will describe the shared core research of cloth simulation, and then go into detail of each
of the use cases.

At a high level, the research into cloth simulation uses Browzwear’s VStitcher as a
ground truth and works to create matching garment characteristics which can be utilised
in other 3D applications for VR and AR. In our use-cases specifically, these applications
are Unity (for VR Designer and MagicMirror) and Lens Studio (for the Snapchat filter).
VStitcher is an appropriate ground truth because it is enterprise software designed to be
as true to the physical garment as possible. Their technology utilises a sophisticated
physics model which utilises scans of fabric samples to understand garment
characteristics. It also utilises the garment pattern information to stitch all of the pieces
together which makes it as close to the real garment as possible.

Garment simulation software (e.g. in Unity) exists and has many parameters which can
be edited. However, it requires manual steps and expert knowledge to make garments
look realistic. In most cases, experts will design garments to look good in games, but are
not working to match how a specific physical garment would move in real life. Because
we are trying to match physical garments in this way, our research is innovative. In this
report we will describe in detail how we use a reference garment movement to find and
set Unity-Obi particle parameters for simulation in AR. We use optimisation to find the
parameters which minimise three defined costs related to the realistic simulation of the
garment. Our technique provides a way for more efficient and accurate output than the
manual method of particle painting.

MagicMirror is the main showcase of our current cloth simulation optimisation. Using our
research we have generated the Unity-Obi parameters for an Odlo t-shirt and have
created a Unity application which allows users to try on that garment in real-time. Getting
the application fully working required integration of ARKit body tracking which is also
described in this document.

As part of the project we also spent some time investigating the quality achievable using
existing market leading technology, Lens Studio by Snap Inc. This is important for us to
understand the possible exploitation of our technology and also to see the quality
achievable by other AR technology in the market. To complete a prototype, we needed
to perform various steps to make the VStitcher garments compatible with Lens Studio as
well as editing the Lens Studio avatars to improve the quality.

The other use cases are the DressMeUp app and the VR Designer. In both cases so far,
the avatar-garment simulation leans more heavily on VStitcher and the work has been
focused on the backend and decisions we had to make to reach first versions of working
software. For DressMeUp, we will describe the pipeline to go from scanned person to an

Filename: eTryOn_D2.2.docx Page 10 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

image with the person wearing the 3D garment. We will also describe a framework we
built to assess the quality of the output. For VR Designer, we will describe the
requirements of the end-users and describe using animations of avatars and garments
directly from VStitcher for this use case.

Filename: eTryOn_D2.2.docx Page 11 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

3. Cloth Simulation

3.1 Physics based garment simulation in Vstitcher
Physics Based Simulation (PBS) is the computer graphic process that synthesizes the
shape of a 3D garment model based on predefined physics models. In early research, a
spring-mass model was widely used to represent the stretch and compression between
garment particles. It has evolved later to include more complex cloth behaviours (e.g.
self collision, bending effect, buckling effect) and improve the stability of the system of
equations (Terzopoulos 1987, Choi 2002).

Many garment design applications support PBS as a fundamental tool to synthesize how
a designed garment will settle on a target body. This process generally involves solving a
large system of equations iteratively, so it will require some computation time and the
result will be specific to the garment and body. VStitcher also supports garment
simulation from 2D cutting patterns with a range of fabric physics parameters to deliver
realistic PBS results. The simulation process is similar to many other designer
applications, which includes a) initial garment arrangement around body parts, b)
stitching patterns in 3D and c) running the simulation iteratively (see figure 1). It is also
worth mentioning that the body model should be free from the body self-intersections to
avoid long simulation or any unwanted simulation artefacts such as minor body
clippings. Initial garment position can play an important role to produce a stable outcome
as well.

Figure 1. Garment PBS in VStitcher: 2D cutting patterns are arranged around the associated
body parts (left) before running PBS, which will find the new settling position of a garment using

many textile physics parameters (right)

The static PBS can be easily extended to create an animated garment, e.g. we can
cache the PBS result at each keyframe and play them continuously later. One main
difference might be that an animation can reuse the result from the previous frame as an
initial garment position and we can also feed the dynamic information (e.g. inertia) if
required. In this project, we generate animated garments and body models as the main
assets for the UC1 designer app (Sect. 7), and we also use them as a reference point in
the UC3 when we optimise the garment particle values (Sect. 5.2).

Filename: eTryOn_D2.2.docx Page 12 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Creating a reference garment animation starts from preparing an animated body model.
To facilitate this process, we develop a new animation baking pipeline. Since body
animation is a smooth change of 3D pose parameters (i.e. a list of 3 relative rotation
values at joints), we can theoretically produce any animation by defining pose
parameters at keyframes and interpolating the values over time. However, producing a
credible body animation is another problem, which is tricky to do manually as the result
should account for the appropriate kinematic body constraints from different body
shapes. Instead, we extract the motion data from the open-source body animations in
Adobe’s Mixamo.com. The proposed pose baking pipeline transfers a list of Mixamo
body animations to our body model, inserts a canonical pose (e.g. A-pose or T-pose) at
the beginning of the animation, and then interpolates between keyframes. (see figure 2).

Figure 2. Baking body animation: creating animated garments starts from preparing valid body
animation. The proposed pipeline transfers the animation from an open-source library (first

image) to a target body model with a canonical initial keyframe pose (second image). Transferred
running animation at keyframe 10 and 20 are also shown in third and fourth image, respectively.

There is no single, standardised data format for animated 3D models that supports all
the 3D information we need to support. The challenging point is how to efficiently store a
large amount of data from a moving 3D object in a complex scene graph. The most
popular format is FBX with Maya cache files. This is the same as FBX format for static
3D models but with additional cache files storing the vertex changes in each frame.
Recently, alembic file format (ABC) is also widely used in many visual effects, 3D
animations, and games as an alternative to the proprietary FBX data format. We also
use ABC file format to store the reference animation efficiently as well as static FBX file
format to store the UV mapping and skinning information.

3.2 Real time garment simulation in game engines

PBS-based garment simulations normally produce the most realistic garment draping
results. However, the computational load involved in the PBS makes it almost impossible
to use it within any real-time 3D applications. This will be a critical limitation for VR/AR
apps, which normally need to deliver more interactive simulation results rather than
realistic simulations, such as deforming the garment according to the tracked body pose,
or estimating collision with a moving body underneath.

Filename: eTryOn_D2.2.docx Page 13 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

This section will explain two fundamental rendering tools (such as skeletal animation in
Sect. 3.2.1 and particle based animation in Sect. 3.2.2) that we used for developing
responsive garment rendering pipeline for better AR experience.

3.2.1 Skeleton based simulation

As a workaround for the timetaking PBS, many 3D applications adopt skeleton-based
animation for garment rendering. Skeleton-based animations (also known as “skinning
animations”) basically embed a skeleton in a target 3D model and estimate new vertex
position from the underlying skeleton movement. For example, “linear blend skinning”
assumes that the new position of the surface vertex can be estimated by a linear
combination (i.e. a weighted sum) of bone transforms. This means we can compute new
garment positions from a few matrix multiplications (e.g. Unity normally uses only 4
associated bones in their humanoid object animation), which is a significant reduction of
computational load compared to what is done with PBS in an iterative way.

However, the skeletal animation has the following practical issues:
● 3D designers need to define correct skinning weights for each surface vertex

(which will be internally stored in a mxn matrix, where m is the number of vertices
and n is the number of bones). This process is normally done by vertex painting
which is not trivial for novice users.

● In addition, each bone of the skeleton should be correctly placed within the body.
Incorrect bone positions could result in body interpenetration even with the valid
body pose parameters. This will be noticeable especially with 3D body models
with high BMI or with extreme motions. This makes 3D content creators spend a
long time to adjust bone positions and the associated skinning weights.

The process of defining skinning weights and placing bone positions are often
collectively called “rigging” or simply “skinning” (so it should not be confused with
“skinning” in the skinning animation).

In our AR application for real time garment simulation (e.g. MagicMirror app), we also
adopt skeleton based animation as a baseline garment rendering tool. To avoid the
manual skinning process, we assume that a garment model shares the same bone
structure with the underlying body model. This seems to be reasonable as the garment
is normally designed to wrap around different body parts. To simplify the process further,
we also assume that the garment shares the same skinning weights from the nearby
body vertex (see figure 3).

Filename: eTryOn_D2.2.docx Page 14 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 3. Garment skinning at T-pose; this is similar to the previous garment skinning process we
used for our Snapchat filter. One difference this time is it will store the body-to-garment vertex

mapping table to skin the garment at an arbitrary future pose.

The skinning process developed in this period is similar to the previous garment skinning
we have developed for a Snapchat filter. But the idea was slightly extended this time to
store additional vertex mapping information for skinning a garment at an arbitrary
position (see fig. 3.4). This will be especially useful when we need to compare the
rendering result from a reference animation in ABC format with the animation result from
a rigged FBX in Unity.

Filename: eTryOn_D2.2.docx Page 15 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 4. Example of garment skinning at an arbitrary body pose; transferring the skinning
weights from the nearest body vertex to a garment vertex is not ideal with some body pose (e.g.
the weights for the long sleeve can be transferred incorrectly from the torso rather than the arm).
To avoid this confusion, we define a body-to-garment vertex mapping at T-pose, store the table in

a UV map (top) and then reuse it for skinning transfer at an arbitrary body pose (bottom)

3.2.2 Particle based simulation

The skeletal animation can deliver fast garment animation. However, the result is
generally not realistic enough. This is mainly because it cannot depict local shape
deformations over time. Since this nonlinear behaviour is hard to capture properly with a
weighted sum of linear transforms, there is a certain limitation that we can achieve from
the skeleton based animation; e.g. the resulting garment looks glued on a body with
fixed creases.

As a solution for this, we designed a rendering pipeline that applies particle based
simulation on top of the skeletal animation for our MagicMirror app (see figure 5). Due to
the efficient physics computation with sparse particles, the proposed pipeline realises
fast local deformation without incurring too much computation.

Figure 5. Our garment animation uses particle animation on top of the skeleton animation of a
garment to capture the dynamic local movement of a garment

The particle based simulation minimises the heavy physics computations by
approximating a target garment with a sparse set of particles distributed evenly across
surface meshes (see figure 5. middle). An idea of using particles and the constraints
between them to simulate physics effects is quite similar to the classic spring-mass
model. However, the latest particle models not only generalise it further for any soft body
objects (e.g. gasses, fluids, ropes, and garments) without requiring additional complex
nonlinear models, but it also implement novel particle physics solvers which can
parallelise the process (Macklin 2014).

Filename: eTryOn_D2.2.docx Page 16 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Nvidia Flex is one of the good candidates for the particle garment simulation. However,
we found that is not the best option for us as it cannot handle the multiple garment
submeshes from VStitcher without additional preprocessing steps. Although it is
available from Unity, our initial tests also found that setting up the particle parameter
values is not trivial and it is difficult to make the result match to our reference animation.
As an alternative, we use Obi-cloth which can provide similar functionalities with more
flexible interfaces to particle properties and has the ability to stitch multiple submeshes.

At the time of writing, most particle simulation libraries do not support mesh colliders if
particle physics is running with skinning animation. This seems to be a reasonable
design decision to avoid long computational time for real-time collision detection.
However, this means the users need to set particle parameters correctly to avoid body
clipping. One hybrid solution could be configured to address this, e.g. approximating the
body with a set of primitive colliders (e.g. cylinder colliders). This idea was explored early
in this period but in the end we decided that the automatic creation of a body collider
was unnecessary. Body collision is no longer a significant problem in AR because the
user’s body is used and the image compositing happens separatately to the physics
simulation.

3.3. Data driven garment simulation

Another approach we can try to improve the quality of garment simulation is data-driven
garment rendering. This approach is getting more attention recently due to the significant
performance improvement via various new deep learning (DL) techniques. Many
researchers are now even challenging classic forward rendering pipelines with different
DL models trained from large data samples of partial information; e.g. neural radiance
field can render an image at arbitrary viewing position after training only with multiple 2D
images (Mildenhall 2020, Barron 2021).

In this project, we are also interested in exploring the potential of deep learning solutions
to overcome the limitations from the classic garment pipeline explained in Sect. 3.2, and
produce results that can be comparable with the result from the classic PBS explained in
Sect. 3.1. This machine learning approach will be different to the models for “Neural
Rendering”, in a way that it will focus more on predicting better garment geometry from
dynamic body motion rather than delivering photorealistic images. We call this model
Neural Dynamics (ND) similar to Neural Rendering. The following subsections will
explain more details about our plans and summarizes the current status of this stream of
the work in the project.

3.3.1 Neural dynamics
Data-driven garment simulation is a well-known problem in the computer graphics
community. One of the early works closely related would be DRAPE (Guan 2012), which
extends the idea of reconstructing nonlinear body shape using principal component

Filename: eTryOn_D2.2.docx Page 17 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

analysis (PCA) to predict nonlinear garment deformation from body shape and pose
parameters. Since DRAPE solves the problem by optimizing the cost to find the best
PCA coefficients for the deformation transforms, it is not the same as the recent DL
solutions. However, the ideas behind DRAPE are still valid in many latest garment
deformation models (e.g. interpenetration loss, garment damping terms).

Similar to DRAPE, our ND should be designed to predict a nonlinear garment shape
deformed by body shape and pose parameters. More specifically, we would like to
predict the vertex offset between the actual deformed garment and the one from the
skeletal animation. This incremental rendering approach can help reduce the range of
predicted values and will make ND more compatible with the conventional rendering
pipeline.

We are expecting the proposed ND will perform better in terms of the processing time
and the fidelity of the deformation. However, we also foresee the following technical
challenges;

● 3D data representation
Unlike 2D images, ND should take as input 3D models. It means the ND
architecture would change significantly depending on the data representations
(e.g. 3D point cloud, volumetric data, implicit surface function, and UV map). One
noticeable difference from 2D images is that the number of the local neighbours
can differ at each vertex for 3D data. This makes it difficult to reuse the
conventional CNN. As an alternative, we can adopt Graph CNN (GCN). However,
the complex operation of GCN could be a potential issue for developing an ND
model for mobile environments (e.g. Lens studio or Spark AR studio). The
feature pooling operation will be more elaborated as well. Although there are
various GCN/pooling ideas, it is hard to tell which would work best for different
applications.

● Model generalisation
At the time of writing, most garment draping models are garment specific
(Gundogdu 2019, Patel 2020, Saito 2021). It means that a trained model can
predict the deformation from different body poses and shapes, but we need to
train it for each garment. It is probably natural, considering the large shape
variations between different garment types. However, we hope we can generalise
it at least for different garment sizes within the same garment. It should be also
noted that GCN requires a template garment to ensure all training samples have
the same topology. Thus, it makes it more difficult to develop a generalised ND
model. There are some latest models (Ma 2021) that can generalise the different
garment types using the latent vector from auto-decoder, but it requires a
different 3D data representation using a UV map.

● Deterministic behaviours of supervised model
Local creases found on garments are not deterministic with respect to body
parameters, but vary with how the garment is dressed on the body and previous
movement of the body and garment. If we train a model in a supervised manner,
the deformation results will be fixed for specific input body parameters. In order
to synthesize the randomness of the creases, some researchers have tested

Filename: eTryOn_D2.2.docx Page 18 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

various generative models (Lahner 2018, Ma 2020). The downside of using a
generative model is that training will be more difficult and unstable.

● DB and data preprocessing
To train a DL model, we need a large number of data samples. The number of
required data samples can be different depending on the unknown parameters in
your deep learning model. But a general rule of thumb is a few hundred thousand
samples are normally required to train/test a model. Collecting this amount of 4D
data from PBS will be labour intensive and time taking. It also requires many 3D
data preprocessing tools (e.g. rigging, animation, skinning, and reposing), which
could be another overhead for developing ND models. We will explain more
details about DB in the following sections (Sect 3.3.2).

Amongst recent DL models, we found GarNet (Gundogdu 2019) will be a good starting
point to build our ND model. Since GarNet adopts PointNet (Qi 2016), it can take an
unordered point cloud as input and extract features in a transform invariant way. We are
particularly interested in the PointNet architecture for segmentation, which was designed
to combine local features with global features to create a per-vertex segmentation score.
We think this feature fusion will be recycled in our per-vertex deformation estimation.
Another important feature of PointNet is it does not use topology, so we do not need to
bind with a specific template garment topology. Fig. 3.6 shows an example pipeline for a
GarNet based ND model. We could improve the model in future to fuse the local features
from body and garment more explicitly.

Figure 6. example of GarNet based garment deformation model

In addition to the general risk for ND we assessed earlier, we envisage that a GarNet
based ND model will suffer the following issues:

● Body-garment interpenetration
Although there are specific loss terms for improving body clipping in GarNet, we
think the missing pose normalisation step in GarNet would give an incorrect
estimation resulting in body clipping for some body shapes. This problem is
known from early research and many suggest using additional post-optimisation
to correct the inferred deformation offsets (Santesteban 2019, Guan 2012).
There is some new research that tackles this clipping problem with a novel DL
architecture (Santesteban 2021). Alternatively, we can simply measure the
deformation from the corresponding body vertex to address the issue (Ma 2021,
Ma 2021b)

● Local details

Filename: eTryOn_D2.2.docx Page 19 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Many deep learning models try to be general so that it can give a reliable result
from diverse inputs. A problem with this is that the final model is not able to
capture the fine details at the cost of the generality of the model. To address this,
many garment draping models have a separate subnetwork to learn this
discrepancy (Patel 2020, Santesteban 2019). At this stage, we plan to develop a
simpler model that works for mobile environments, so we will try other network
techniques to improve base GarNet.

● Deterministic details
As mentioned earlier, this will be inevitable with supervised learning. This is not
the higher priority at the moment and we rather focus more on the general
deformation of a garment to deliver the fit related information for MagicMirror.

● No dynamic features
The draft model shown in fig. 3.6 does not use any dynamic information from
motion. As other research suggested, it would be useful to exploit the dynamic
features from the previous frames. We think LSTM or BERT style networks
(Devlin 2019) would be useful to learn the dynamic features. However, this will
not be a high priority at the moment because it is not as important for fit
prediction.

3.3.2 Garment DB for Neural Dynamics
In order to learn garment deformation from different body motions, we require a variety
of 3D data, including rigged body models, compatible motion data (i.e. pose
parameters), and garments. They should be appropriately augmented to span our target
application space.

There are some existing DBs useful for learning garment deformation (see Table 3.1),
but most of them are not open to the public or only available for research purposes. Most
importantly, since each DB is created for specific applications they are not the best DB
for training our ND model. To address this, we have developed a new animated garment
DB using PBS.

Table 3.1. Existing garment DBs developed for garment animations
Data source Body model Motion Garment

DRAPE PBS (by Optitex) CAESAR (avg M/F),
SCAPE (60M+60F)

~20 motion seq. 5 graded garments
from 2D patterns
using optitex

Deep wrinkle 4D scan Single body (SCAPE) Unknown (from 4D
scan)

Single T-shirt (~5K
vert)

GarNet PBS (by NvCloth) 600 SMPL body
models

60 motions from CMU
Mocap DB

3 garments (~10K
vert for each); T shirt,
sweater, jeans

CAPE 4D scan 11 ppl w/o and w
clothes, registered w
SMPL

CAPE motions for
each scan

8 garments

Filename: eTryOn_D2.2.docx Page 20 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

TailorNet PBS (by Marvelous
designers)

9 SMPL bodies 1982 static SMPL
poses

Synthetic garment
samples generated
from garment PCA,
followed by PBS

Learning based
animation

PBS (by ARCsim) 17 SMPL bodies 56 CMU motion seq.
(~7K frames)

Single T-shirt (~9K
vert) and use
retargeting technique
for diff size

SCANimate 4D scans (CAPE) CAPE bodies (SMPL) CAPE motions,
ASIT++, AMSS

CAPE (real 4d scan
of clothed subject)

Self-supervised
collision handling

PBS 17 SMPL bodies AMASS Dress, T-shirt

Cloth3D PBS (by Blender) 100 SMPL 23 actions from CMU
motions

4 garments +
synthetic variations
(shape, material,
tightness)

Our new DB has been built in a similar way to Cloth3D (Bertiche 2021). For example, the
reference garment drapes are generated using VStitcher from 50 animated body models
(i.e. 32 males and 18 female models from actual scans) which were animated by 25
motions from Mixamo. Our garment models are created from 2D cutting patterns and we
collected them from open source libraries and internal garment DBs (see figure 7, top).
Each garment has multiple sizes which will be used to populate different garment
samples within the same type for future research. More information about our DB is
summarised in Table 3.2.

Table 3.2. Summary of Metail garment DB for ND
Data source Body model Motion Garment Tot no.

anim.

Metail DB (set1) PBS (by
VStitcher)

2 body models (M1
and F1) from actual
scans

Each body embeds
25 Mixamo
animations

8 Garments from
2D cutting
patterns

400

Metail DB (set2) PBS (by
VStitcher)

48 body models
from actual scans
(M31/F17)

Each body embeds
25 Mixamo
animations (this can
be different motion
from set1)

8 Garments from
2D cutting
patterns

84,000

Some of the sample animations we have created (in ABC format) are found in figure 7,
bottom. The generated animations often suffer undesired artefacts. For example, the
garment would be falling on a wrong settling position because some parts of the garment
were caught by hands or head. It is also possible that the simulated animation could
create significant body intersections even though pose parameters are valid. These
samples are filtered out manually using separated QC tools. Some sample gif files
generated for our manual QC are also shown in figure 7, bottom right.

Filename: eTryOn_D2.2.docx Page 21 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 7. Example of garments used in our DB (top), sample animation (bottom, left), GIF images
from 3 different viewing angles automatically generated for manual QC process (bottom, right)

Filename: eTryOn_D2.2.docx Page 22 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

4. Snapchat Filter
Lens Studio by Snap Inc. is a framework designed to build augmented reality
experiences for Snapchat. Because it has many built-in features, including custom
shaders and body tracking, and can be used to create AR experiences for an existing
user audience of over 300 million, we have used it to demonstrate the goals of the Magic
Mirror app (use case 3).

So far, we built our own avatar, based on average body shapes, and created tools to
create a skeleton compatible with Lens Studio. However, by dressing this avatar we
produced results poorly aligned with the user’s body. See some of the examples below.

Figure 8. Some examples of a tracksuit Snapchat filter, where the garment was simulated on an
average male body shape.

4.1. New avatars for Lens Studio (Rens)
Snap provides a neutral avatar in a T-pose as reference. We decided to use that avatar
in our pipeline to try to better the alignment with the user’s body in AR. The file provided
by Snap is an FBX file, with the correct skeleton for Lens Studio, but we needed to
manually add the anchor points for dressing in VStitcher and an A-pose so we can dress
the avatar in a more natural way. We called this avatar “Rens” version 0. The figure
below shows Rens next to the average male body shape we had used earlier.

Filename: eTryOn_D2.2.docx Page 23 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 9. Average male body shape (left) vs Snap body mesh (right).

We have also developed a plugin for VStitcher to easily export the garments and make
them ready to use in Lens Studio. So the steps to create a Snapchat filter are:

1. Dress Rens & reduce the grid size of the simulation (Snap recommends a
maximum of 60K triangles per scene).

2. In the plugin, select “Export for Lens Studio”. This automatically exports the FBX
file, removes trims and buttons with a high number of polygons, generates all the
necessary textures, and skins the garment based on Rens avatar. The skeleton
is simply copied over from Rens.

3. Load the skinned garment FBX in Blender and save it again (this is a workaround
because Lens Studio can’t read our files directly for some reason).

4. Drag & drop the skinned garment FBX in Lens Studio and import all the textures
and materials.

As you can see in the figure below, this avatar already produced better alignment with
the user’s body.

Filename: eTryOn_D2.2.docx Page 24 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 10. Comparison of the tracksuit Snapchat filter using the average body shape (left) vs
using Snap body mesh (right)

However, we have introduced another problem around the legs. As you can see, the
trousers get pulled towards the opposite leg as you get closer to the crotch. This artefact
happens for 2 reasons:

1. When we assign a skinning weight to a vertex in the garment, we search for the
nearest vertex in the avatar. If the garment is a bit loose, in places near the
crotch the nearest vertex may end up being on the other leg. A similar problem
happens under the armpit, where the closest vertex of the sleeve could end up
on the chest instead of the arm.

2. To smooth out the skinning, we take the K-nearest vertices and average their
skinning weights. But the tessellation of the avatar provided by Snap is very low,
so the second nearest vertex for a point on the thigh could end up being at the
knee, since there aren’t any more vertices in between.

To resolve those problems we created a new version of Rens with increased tessellation,
and with an A-pose with the legs further apart. The tessellation was increased manually
by editing the mesh in Maya. The tessellation of version 0 is compared with the latest
version below.

Filename: eTryOn_D2.2.docx Page 25 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 11. Original tessellation in Snap body mesh (left) vs our retopologized mesh (right)

The pose selection at the moment is a manual process that depends on the type of
garment. We found out that for skirts, the legs closed work better, because the pose
looks more natural. But for trousers, we better use this new pose with the legs further
apart to avoid capturing skinning weights from the opposite leg, as described above. The
figure below shows the latest version of Rens, and how the garment looks once dressed
in VStitcher.

Figure 12. Our Rens avatar with increased tessellation in VStitcher.

Filename: eTryOn_D2.2.docx Page 26 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

The figure below shows some results with the new version of Rens.

Figure 13. Some examples of a tracksuit Snapchat filter, where the garment was simulated on
the latest Rens avatar.

4.2 Avoiding Z-fighting
When the garment is tight, the position of the triangles of the garment is very close to the
position of the triangles of the avatar. When rendered from a distance, the depth values
of the individual pixels inside each triangle may randomly appear in front or behind the
avatar, depending on the precision of the depth buffer. This phenomenon is called
Z-fighting.

In AR we may not need to worry about Z-fighting if we only render the garment.
However, the avatar is usually rendered as well with a special occluder material, so the
parts of the body can occlude the garment. The figure below shows a bad case of
Z-fighting with a full-body occluder. Note that most of the top disappears.

Figure 14. Bad case of Z-fighting, caused by the triangles of the occluder mesh sharing positions
with the garment mesh.

Filename: eTryOn_D2.2.docx Page 27 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

In reality, there are two problems that we conflate here under the label of “Z-fighting”,
genuine Z-fighting because of very similar depth values, and misalignment problems that
cause the garment to end up inside the body.

There are 2 main causes for misalignment. The first one is due to a global offset that
VStitcher applies to the models when imported, based on the crotch and feet positions.
We can compute this offset and undo it during export. Our VStitcher plugin takes care of
that.

The second cause of misalignment doesn’t have a simple fix, though. It is caused by
skinning itself. The garment is only perfectly aligned to the avatar in the pose that we
dress the avatar in, which in practice, we will never see in the real application. The user
will always move and appear in a different pose. And the body shape is also different.
Because the skinning is applied to the garment separately, and the topology is also
different from that of the avatar, triangles can easily cross.

Figure 15. Tracksuit dressed in A-pose (left) and then reposed after skinning to a T-pose (right).
Note that some triangles intersect the arms.

To try to alleviate this problem we could create a version of Rens avatar slightly wider,
and create a bit of gap with respect to the avatar in Lens Studio. But that doesn’t resolve
all cases, unless we exaggerate the difference a lot. But then a tight garment wouldn’t
look tight anymore.

We opted for creating our own occluder body for Lens Studio which is split into different
body parts. For instance, for a full-body tracksuit, we enable the head, neck, and hands
occluder. Since for arms, torso, and legs there is no occluder mesh, Z-fighting won’t
occur. The inconvenience of this approach is that the occluder needs to be set up
independently depending on the type of garment. For some garments it may be
ill-posed. For example, if we have some trousers full of holes, ideally we would like an
occluder that only covers the parts where there are holes in the garment, but that’s not
possible to generate in the general case.

Filename: eTryOn_D2.2.docx Page 28 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

4.3. Demo - Lens using new Odlo garments (Scott MTB)
You can find in Instagram a promotion video of the released Snapchat filter, with Odlo’s
Scott MTB T-shirt.

Figure 16. Video of Odlo garment virtual try on Snapchat filter

https://www.instagram.com/p/CWnxzlqrfkP/

Filename: eTryOn_D2.2.docx Page 29 of 55

https://www.instagram.com/p/CWnxzlqrfkP/
https://www.instagram.com/p/CWnxzlqrfkP/

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

5. Magic Mirror

5.1 Overview of the application and required backends

Magic Mirror app is targeting online shoppers who want to see the 3D garment they are
thinking to purchase on their body. Thus, it needs to provide the required information by
simulating the physical experience of try-ons in the digital space. For this, we rely on
game engines, i.e. Unity and the following backend technologies:

● Fast yet realistic garment rendering
● Real time body tracking
● Garment image compositing

Since our image compositing ideas developed in the Snapchat filter (Sect. 4.2) can be
reused to tackle the garment compositing in Magic Mirror AR, the following sections will
focus on explaining the technical challenges for garment rendering (Sect. 5.2) and
real-time body tracking (Sect. 5.3).

5.2 Cloth sim optimisation

As mentioned in Sect. 3.2.2, our approach for the real-time rendering of a garment in an
AR app is developed based on particle simulation with garment skinning animation. The
particle-based physics simulation has proven its real-time performance and the fidelity of
the rendering soft bodies (Macklin 2014). However, it is not intuitive for novice content
creators to configure the physics parameters.

In general, most physics parameters can be played as global variables for garment
simulation (e.g. friction and bending/stretching stiffness for a garment), so that a single
constant value would suffice to simulate some garment effects. However, manual
adjustment of multiple values will be daunting at times, and the simulation results are
often too sensitive for small changes.

For expert users, it is also possible for more granular adjustment. For example, many
cloth simulation plugins provide vertex painting UI to restrict the local movement of a
garment (see figure 17). It allows users to control the detailed movement in addition to
the general shape deformations from the global physics parameters.

Filename: eTryOn_D2.2.docx Page 30 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 17. Example user interfaces for particle-based garment simulations; Unity cloth simulation
(top) and Obi-cloth (bottom)

In Obi Cloth, we identify three per-particle parameters (i.e. skin radius, backstop, and
backstop radius) useful to control the local deformations (see figure 18). These
parameter values can be stored in a UV map in an Obi-blueprint with additional
metadata. However, for some novice users (even for some mature 3D artists), preparing
these per-particle values would be challenging. We can easily see that the process is
overly simplified with a single fixed number for all particles in many practical cases. To
address this, we develop an Obi parameter optimisation tool. The developed tool can
create new parameter images from reference animation and provide optimal scaling
values for the images.

Figure 18. Particle parameters in Obi-Cloth which can control local garment movements

Filename: eTryOn_D2.2.docx Page 31 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

5.2.1. Obi parameter images

As a first step for understanding the movement of a target garment, we create a
reference garment animation from VStitcher. To make this work, we first establish the
body-to-garment correspondence using KNN. The heatmap in figure 19 (top) shows the
distance from the vertex correspondence. It helps us see how the garment would be
placed at the resting position.

If we record the distance over a body animation, we can identify different vertex
movements from different garment areas; e.g. a vertex around the chest tends to move
less (see figure 19, middle) than the vertex around the thigh (see figure 19, bottom).
Based on this observation, we develop a simple algorithm to create the statistics for the
garment vertex movement (see figure 20, right).

Filename: eTryOn_D2.2.docx Page 32 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 19. Examples of the vertex movement from a body motion; garment-to-body distance at
resting position (top); the vertex movement in the chest area over time (middle); the vertex

movement in the thigh area over time (bottom), where each coloured line (orange, green, blue)
represents the movement on x, y, z axis, respectively.

The probability for each garment vertex movement is approximated using the standard
deviation of the difference between body-to-garment distance at current frame and that
from the resting position. We normalise this value with maximum difference, so that the
probability is always less than 1.0. This is not a proper probability but it is enough to tell

Filename: eTryOn_D2.2.docx Page 33 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

how much each garment vertex would move within the provided motion. We see this
information is closely related to the skin radius in Obi-cloth, which defines the maximum
radius of particle movement during the simulation.

Figure 20. Examples of the heatmap for garment vertex movement (left); the algorithm creating
the vertex movement probability (right)

To convert the per-vertex probability values to a continuous particle parameter image for
Obi-cloth, we apply grid interpolation. The resulting values are also smoothed out by a
simple blurring filter, which can alleviate the spiky movement during simulation. Figure
21 summarises the overall process. In this example, the front panel of a polo shirt was
used. As you can see in the figure, the estimated probability values are discrete values
in a 2D UV space (figure 21 left). These discrete values are not useful to Obi-cloth, since
it will populate the particles internally at an unknown grid size. Thus, we should make
this map continuous so that Obi-cloth will safely retrieve the necessary particle
properties. We achieve this with simple image processing techniques and save the result
in the red channel of an RGB texture map (see figure 21, middle).

Figure 21. Overall conversion process to create an Obi parameter image from the probability
values

In addition to the skin radius, we also assume that the backstop skin radius would follow
the similar pattern. The backstop skin radius in Obi-cloth works as a limiter of the particle
movement. For example, the max range that each particle can move will be defined as
skin radius - (skin radius ∩ skin backstop radius). Therefore, if the skin backstop radius

Filename: eTryOn_D2.2.docx Page 34 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

is too small, then we can see large garment fluctuations that can go under the body
surface. Thus, we assume that the local continuity of the skin backstop radius would be
similar to that of skin radius but the scale is higher than the skin radius. Finally, we use a
constant backstop value for all particles so that the garment particle is always slightly
above the body. At the end, we have the parameter images for skin radius, backstop,
and backstop skin radius, but we do not know the exact scale of the map. We see finding
this value as an optimisation problem and solve it with 3 cost functions.

5.2.2. Obi parameter optimisation

Parameter images produced in the previous section are not usable without proper
scales; without scale, it is just 8-bit values between 0 and 255, which does not have any
meaning in Obi physics. We initially saw that finding 3 scaling values is an optimisation
problem, and thought this could be easily achievable with standard gradient descent
approaches. However, we cannot compute the gradient analytically, because our cost
functions are defined on rendering images from Unity (which is a blackbox to the
optimiser). Numerical approximation of the gradient is not a good solution either,
because it could require rendering multiple times for each small parameter increment,
resulting in a long optimisation time.

To address this, we employ a non-gradient optimization technique implemented in the
never-grad library (Rapin 2018). This library was originally developed for finding the best
hyperparameter values in DL models. We see that is similar to our problem, where we
are sweeping three scaling parameters to define the best Obi parmeter images.
Internally, the never-grad populates a new sample in a target parameter space in a
similar way to the genetic algorithm.

The following three cost functions are developed to solve this optimisation problem, and
the computed costs for some sample cases are shown in figure 22.

● Body clipping cost
We cannot solve the clipping problem of a moving body using single offline
optimisation. However, we need the rendering result to be as close as possible.
In our implementation body cost function, we count the number of body pixels in
a target area (i.e. garment) and compare that with that from the reference image.

● Similarity cost
This cost measures the pixel value difference between rendering results. Ideally,
the simulated result should be identical to the reference image, but it is not
possible in many cases. We measure this difference using normalised cross
correlation. We also use a RoI box defined from a reference image to penalise if
there is any offset in the simulated results

● IoU cost
The rendering result often translates far from the centre of a body due to strong
particle movement. Incorrect skin radius values would also reveal the gap
between submeshes, especially when the particle moves too much around the

Filename: eTryOn_D2.2.docx Page 35 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

seam. Intersection over Union (IoU) cost penalises the global translation and
small stitching gaps appearing within the garment.

Figure 22. Cost functions used in our Obi parameter optimization and their performance with
different samples.

An example of the optimization process is shown in figure 23, which was obtained from
the polo shirt shown in figure 20. Obi parmeter images and simple initial guesses for the
3 scales are provided to initialise the optimisation process, and the max iterations is set
to 50. In each iteration, our algorithm renders the garment and body using a headless
Unity renderer. In this rendering, a predefined test motion was played with and without a
body model. This creates a list of images which are compared with the reference images
generated from VSticher. Since we sample the motion at every 3-keyframe, the
computed costs are averaged.

As shown in figure 23 right, our optimisation samples a parameter space adaptively; e.g.
in the early stage it samples sparsely (see iteration id 25) and then when it closes to a
local minima (see iteration id from 25 to 42) it starts to sample more densely. We can
see the effect of this sampling on the cost space (figure 23, left).

Filename: eTryOn_D2.2.docx Page 36 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 23. An example of optimisation process: estimated costs over each iteration (left) and the
parameter values used in each iteration (right)

The rendering results at iteration 25 and iteration 42 are shown in fig. 5.9 top and
bottom, respectively. At iteration 25, our optimiser tests the sample at a distance from
the local minimum. Since this sample has a large skin radius (i.e. ~1.95), the garment
rendering diverged away from the body. On the other hand, when it hits near to the local
minimum, the rendering results appear to be much similar to the reference image from
PBS (see figure 24, bottom).

Filename: eTryOn_D2.2.docx Page 37 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 24. Result from Obi parameter optimisation: the worst result in the early iteration (top,
highlighted in green), the final optimisation result (bottom, highlighted in blue)

The overall data pipeline for the Obi parameter optimisation is shown in figure 25. At the
moment, the proposed parameter optimisation requires some manual garment data
preparation steps using VStitcher. We also found that some Unity assets for a testing
garment need to be prepared manually in the headless Unity renderer. This pipeline was
recently modified to reuse the same garment skinning process developed for a snap
chat lens filter.

The animation baking pipeline explained in Sect 3.1 can be used offline to prepare the
animated body models for creating reference garment animations (see figure 25, top
left). Obi parameter image creation requires two 3D inputs in different formats; a
reference animation in ABC and a UV mapping information from a static FBX. Once the
parameter images are ready, Obi parameter optimization will iteratively call the Unity
headless renderer to compute the costs. As a result of this process, we can produce
multiple parameter images in a UV space and optimised scale values, which will be
specific to a target garment and body.

Filename: eTryOn_D2.2.docx Page 38 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 25. Overall data pipeline for Obi parameter optimisation process, where manual
processes are highlighted in purple.

5.3 Body tracking in the Unity application - Skeletal differences in ARKit
At the time of writing Unity only supports body tracking on iOS devices, using Apple
ARKit. This is not very well documented by Unity, but we have Apple documentation as
reference: Rigging a model for motion capture.

5.3.1 Apple ARKit
ARKit requires a particular skeleton for it to work, and the character needs to be rigged
in a T-pose. Apple provides a sample application for testing, and a rigged character.
Unfortunately, the character is a robot, so it’s not the best representation of a person.
The figure below shows the robot with its rig. It has many bones along the spine and
neck. Also, you can see the different skinning areas in different colors in the right figure.
As you can see, the segments are separate, whereas in a human there should be some
smooth transition between the different segments of a limb.

Filename: eTryOn_D2.2.docx Page 39 of 55

https://developer.apple.com/documentation/arkit/content_anchors/rigging_a_model_for_motion_capture

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 26. Sample character provided in Apple’s Body Tracking sample

We require a different skeleton in order to run the animations needed for the training of
our physics parameters, as described in the cloth simulation section. Because of that,
we decided to develop a CLI to convert the skeleton of the avatars to an
ARKit-compatible avatar in the last step of the process. This is similar to the process
described in the Lens Studio section.

The CLI takes an avatar and a script file as an input, and produces a new avatar with the
modifications described in the script file. We call that script file the “tweaks file”, because
it contains a Domain Specific Language that describes a series of “tweaks” for the model
and its skeleton. The main operations or tweaks are:

● origin <JOINT>: recenters the model around the given joint. This is necessary
because the ARKit model is centered around the hip, whereas our models have
their origin between the 2 feet.

● scale <NUMBER>: scales the mesh and skeleton by the given number. The units
of our model are in centimeters, whereas for ARKit we need the units to be in
meters.

● mv-bone <OLD> <NEW>: renames a bone/joint.
● rm-tree <JOINTS>: removes the given joints and all their children. Their skinning

weights will be re-assigned to its parent.
● rm-bone <JOINTS>: removes the given joints and reparents their children to their

grandparents. The skinning weights of the removed joints are reassigned to their
parents.

● add-bone <PARENT> <CHILD> <NEW_1> … <NEW_N>: adds N new joints
between the given parent and child joints. The joints are placed equidistantly
distributed between the parent and child, in the given order, that is, NEW_1 will
be the first child of PARENT, and CHILD will become the child of NEW_N. The
new joints aren’t assigned any skinning weight.

● add-bone <JOINT> <JOINT> <NEW_1> … <NEW_N>: this is the same syntax
and logic as above, but when PARENT and CHILD are the same bone, it is
interpreted as a terminal joint. This is necessary because Apple ARKit requires
the skeleton to be exhaustive, that is, for it to work we need to have exactly all
the bones that appear in their rig, even if they become dummy terminal bones.

Filename: eTryOn_D2.2.docx Page 40 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Our tweak file to convert to Apple ARKit looks like this:

Recenter model around hip

origin hip

Scale from cm to meters

scale 0.01

Bone renaming

mv-bone lFoot left_foot_joint

mv-bone rFoot right_foot_joint

mv-bone abdomen spine_1_joint

mv-bone abdomen2 spine_4_joint

[...]

Remove all these

rm-tree lPectoral rPectoral

[...]

Remove single bones (will be reparented)

rm-bone pelvis

[...]

Add extra bones

add-bone chest neck spine_7_joint

add-bone head head nose_joint

[...]

With that conversion, the model will load in the Apple body tracking sample app. But it
won’t work correctly because the local axis of each joint needs to be adjusted as well.
The figure below shows the Apple body tracking sample using one of our avatar after
applying those tweaks. Note that in order for the model to work, we have to convert the
FBX file that our CLI outputs to USDZ format. This can be done by loading the FBX into
Maya, exporting it to USD, and then using Apple Reality Converter to export to USDZ.

Filename: eTryOn_D2.2.docx Page 41 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 27. Apple body tracking with the provided character (left) and with our first attempt to
import our avatars (right)

In our skeleton, all the joints use a global right-handed axis, where the Y axis points
upward, the Z points to the front, and X points to the right. By inspecting the robot FBX in
Maya, we can check the necessary rotation for each joint and apply it to our conversion.
In general, the Y axis at every joint points forward in ARKit, except for the left side of the
body, where it points backward.

The rotations need to be expressed as axis-angle rotations in the exported FBX. By
knowing which axis points right and which points up, we can compute the third axis
using the cross product. The 3 axes give us an orthonormal base that can be
represented as a 3×3 matrix, which can then be converted to an angle-axis rotation.
Rotations are accumulated through the hierarchy, so assuming that the first joint of the
spine is already facing forward, the next rotation will happen at the shoulder. The figure
below illustrates such a transformation for the right shoulder joint.

Filename: eTryOn_D2.2.docx Page 42 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 28. Rotation of spine axis (left) to obtain the right shoulder axis (right)

With all these changes, the avatar now works in the body tracking sample app from
Apple. We can also apply the same transforms to the skinned garments. The
screenshots below show the ARKit-ready avatar and a polo shirt. Note that the position
of the arms seems low, so the positioning of the joints may be too low in our rig,
compared to that of the robot.

Figure 29. Apple body tracking example with one of our avatars (left) and with one of our
garments (right)

5.3.2 Unity ARKit
Unity uses ARKit for body tracking, but the skeleton configuration is slightly different.
There is no documentation, but there’s an FBX file with the same robot mesh from
Apple, but with a slightly different skeleton. The hierarchy of the skeleton is the same,
but the names are different, and the rotation axis of each joint is slightly different, usually
flipped. There are other small differences, like the starting position of the finger joints. If

Filename: eTryOn_D2.2.docx Page 43 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

we simply rename the joints of the skeleton we computed for the ARKit sample app, we
obtain a quite funny result in Unity. See below.

Figure 30. Naive attempt to convert the Apple ARKit avatar model to Unity ARKit.

After inspecting all the axes of the sample robot file and fixing all the axes accordingly,
we obtain something closer, as shown in the figure below. However, the forearms look
broken for some reason and we haven’t discovered why yet. For short-sleeved garments
it shouldn’t be a problem, though.

Figure 31. Unity ARKit body tracking example with one of our avatars (left) and with one of our
garments (right). Note that there are still issues with the forearm.

Filename: eTryOn_D2.2.docx Page 44 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

6. DressMeUp

6.1 Overview of the application
The DressMeUp application is a consumer application, targeted at social media
influencers, but usable by anyone. The concept is simple - the user scans themselves
once, then can upload photos of themselves and select digital garments to apply to
those photos.

The idea of dressing a photograph with digital garments exists to some extent already,
for example on: https://www.instagram.com/thisoutfitdoesnotexist/. However, it is
different in two key ways:

1. These are garments which will never exist physically
2. There is a large amount of manual effort in creating these images

The DressMeUp application aims to address both of these points. For the application to
add value it needs to:

1. Have better garment representation than a Snapchat Lens.
2. Involve minimal manual processing to compose the final image. Should

preferably be completely automated

6.2 Existing Progress and Manual Test
The first main development to achieve a working application was to successfully import
the avatar scans from WP1 and transform them into a format usable by our software.
This process involved developing an automated pipeline to fix and rig the avatars and
has been described in detail in the previous deliverable (D2.1).

To further assess the technical challenges in delivering this project, we created an
example output using an Odlo 3D garment while performing various of the required
steps manually.

Figure 32. Prototype showing the DressMeUp input and output

Filename: eTryOn_D2.2.docx Page 45 of 55

https://www.instagram.com/thisoutfitdoesnotexist/

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Steps in this test:

1. Ran our pipeline to create an avatar suitable for import into VStitcher
2. Manually refined the pose of the avatar to more closely match the photograph
3. Auto-dressed the Odlo 3D garment on to the A-Pose
4. Simulated to the new pose
5. Submitted garment to our rendering pipeline
6. Manually composed the render into the user photo
7. Assess quality of the output

This largely follows the overall flow outlined in the architecture diagrams in WP4, but
includes manual steps which we aim to automate in the final output:

Figure 33. Photo Composition Flow Diagram
https://etryon.gitlab.io/techdocs/arch-diags/use-case-2/

Filename: eTryOn_D2.2.docx Page 46 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

6.3 Evaluating the output of the Manual Test

In general, the output looks of reasonable quality. The garment, though fully digital, looks
real and the draping around the body appears realistic. However, if you look closely at
the final image, it is clear that there are still some issues with the automated composition
of the garment on the body.

Figure 34. Close up of current prototype output

The main issue is around misalignment between the garment and the body at various
points.

In the final application, we need to produce images of sufficient quality for use by
influencers. To help us understand which areas to focus on and where the largest
misalignments currently occur in our process, we built an evaluation framework.

Filename: eTryOn_D2.2.docx Page 47 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

6.4 Evaluation framework for automatically composed images
To assess the quality of our image compositions, we needed a way to easily generate a
multitude of images for review and recording. To do this we created a pipeline which was
able to process images in batches and output links to the results in a spreadsheet.
These output spreadsheets provide an easy way to collaborate and assess quality in a
consistent way.

The pipeline generates automated images for a given set of dressed poses and then
groups them together into a batch for review. The automated images are produced at
two different sizes - maximum resolution and height 1024px. The reasoning behind this
is that this will enable us to more easily identify which issues are most problematic.
There may be cases where we could offer the user a lower resolution output while the
higher resolution image is being corrected.

The completed images are stored in S3 and links to the images are included in the
spreadsheet. The sheet then marks columns of common issues which are used as a
template to assess the images.

Common issues have been outlined in the spreadsheet:

● No alignment issues (Body + Hair)
● No alignment issues (Hands)
● No layering issues
● No visible shadows on hands
● No unwanted shadows
● No eye artifacts
● Hair visible outside of hooded garment
● Visible undergarments

An example of a completed sheet after assessment can be found here:

Figure 35. Completed Assessment Sheet
https://docs.google.com/spreadsheets/d/1JxozZSpO8CPZsbQ3LAoxOrVQoJvtX6lmeJdu693lUkg/

edit?usp=sharing

Filename: eTryOn_D2.2.docx Page 48 of 55

https://docs.google.com/spreadsheets/d/1JxozZSpO8CPZsbQ3LAoxOrVQoJvtX6lmeJdu693lUkg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1JxozZSpO8CPZsbQ3LAoxOrVQoJvtX6lmeJdu693lUkg/edit?usp=sharing

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

This now gives us the ability to test, iterate and improve the output as we work on
automation.

6.5 Next steps - automatic pose detection and warping
In the project we have now completed a proof of concept which shows that we can make
a functioning end-to-end product (albeit with manual steps) and also created a
framework to evaluate the quality of the automated output produced. This will enable us
to target areas for improvement in our automated image generation.

Next we will be looking at ways to improve the output quality of the automated image
generation. The two main themes of research will be:

1. Automating pose detection from a photograph - so that the scanned avatars can
be re-posed for dressing in VStitcher without manual effort in re-posing

2. Image warping techniques to improve the alignment between the body and the
garment - without distorting the overall look of the output image

Progress on these threads of work will be described in more detail in the next deliverable
(D2.3).

Filename: eTryOn_D2.2.docx Page 49 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

7. VR Designer

7.1 Garment simulation in VR Designer application
The VR Designer application is designed as a way for 3D designers to showcase their
designs to their product teams in an interactive VR setting. The UI is described in more
detail in D5.2 but the key decision in this deliverable is how best to simulate the garment
interactions.

Odlo spent a lot of time building on top of the requirements work completed in D6.1,
discussing with designers how the VR application can best satisfy the requirements of
the wider design team. In the end, two key decisions were reached to showcase the
garments in the best way:

1. 3D fit avatars need to be used in the application (rather than scans of the fit
models). This is necessary to ensure consistency and dressability. Because the
garments are designed on these fit avatars, the garments will fit exactly as
intended and there will be no high frequency ‘bumps’ which will affect how the
garment looks

2. The garment simulations will be exported directly from VStitcher to ensure that
the VR application shows the garment physics as realistically as possible. Unlike
the MagicMirror which requires freedom of movement, the animations for this
application are preset. This means we can directly use the cloth simulation
generated by VStitcher

These decisions mean that for this deliverable, the work for the VR Designer application
becomes firstly about exporting the animation files correctly (as alembic files which can
be used in VR) and secondly about working on the avatars to make them as close to
human looking as possible.

7.2 Using Browzwear’s new ‘realistic avatars’ to export animation
Browzwear has created two new avatars which look more realistic than typical 3D
avatars.

Filename: eTryOn_D2.2.docx Page 50 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Figure 36. Browzwear’s parametric avatars. Previous generation, left, vs current generation,
right)

In this figure you can see the previous generation of avatars alongside the latest
generation equivalents. Although not yet photorealistic, there is improved realism in both
the bodies and the hair.

The other advantage of these avatars is that they are parametric, which means their
shape can be changed, and animatable.

Figure 37. VStitcher’s animation workspace

Filename: eTryOn_D2.2.docx Page 51 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

In this figure you can see some default animations that VStitcher has, and also that you
can import animations from external services such as Mixamo.

For the VR Designer application, Odlo will be choosing suitable animations to showcase
their garments, running the simulations and then exporting them for use in VR.

Figure 38. Exporting alembic files from VStitcher

Odlo are in the process of getting the new parametric avatars created for all of their size
sets and will then process the files for import in the application. Further details of this
progress will be discussed in the next deliverable D2.3.

Filename: eTryOn_D2.2.docx Page 52 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

8. Conclusion
The objective of this deliverable was to provide the basic working version of
avatar-garment simulation software. This document describes in detail the steps taken to
successfully reach that point. The effort required for each use-case was different, but we
have shown that we can deliver the requirements for each effectively, whether that is
through:

● Utilising the latest features in VStitcher (new avatars and animations) and pulling
them in to VR [VR Designer App]

● Manual end-to-end pipeline plus a criteria for evaluation, with a view to target
automation effectively [DressMeUp App]

● Building on top of existing technologies and integrating with our systems to
create AR lenses [SnapChat Filter, MagicMirror App]

● Creating innovative approaches to get to true-to-life cloth simulation on real body
shapes in Unity [Magic Mirror App]

Creating these first versions of working software show that the research is not only
innovative, but also applicable to real world scenarios.

These use cases highlight the significant progress made in the “simulation algorithms for
avatar-garment interactions” innovation objectives. We can now visualise professionally
designed virtual garments on real people, in both static images and real-time video. We
have shown how animations can be taken into VR to share designs in an entirely new
way. Finally, we have created a way to predict realistic physics of garments that are
made for production by fashion designers in a game engine (Unity), without disrupting
the fashion design workflow.

We will be continuing to improve in both quality and automation for these applications as
we work towards the next deliverable for the final version of the simulation software.

We believe we can improve the output of this objective by adding a visualisation of how
garments fit on a given body. We intend to utilise our learnings in VStitcher so far to
create a dataset of animations consisting of different sizes of garments on different sizes
of avatars. From this dataset, we aim to replace the garment deformation model with a
new deep learning model which will allow garment simulation for different poses and
body shapes. If this works as intended, we can then build a machine learning ML model
for fit prediction given an arbitrary body input.

Filename: eTryOn_D2.2.docx Page 53 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

9. References

Demetri Terzopoulos, John Platt, Alan Barr, Kurt Fleischer “Elastically deformable models,”
SIGGRAPH proc. 87

Kwang-Jin Choi, Hyeong-Seok Ko. “Stable but responsive cloth,” SIGGRAPH02

Miles Macklin, Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim “Unified particle physics for
real-time applications,” SIGGRAPH14

Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi
Ramamoorthi and Ren Ng “NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis,” ECCV20

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla,
Pratul Srinivasan “Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance
Fields,” ICCV21

Guan, P. and Reiss, L. and Hirshberg, D. and Weiss, A. and Black, M. J. “DRAPE: DRessing Any
PErson,” ACM Trans. on Graphics (Proc. SIGGRAPH12)

Erhan Gundogdu, Victor Constantin, Amrollah Seifoddini, Minh Dang, Mathieu Salzmann, Pascal
Fua “GarNet: A Two-Stream Network for Fast and Accurate 3D Cloth Draping,” ICCV19

Patel, Chaitanya and Liao, Zhouyingcheng and Pons-Moll, Gerard, “TailorNet: Predicting Clothing
in 3D as a Function of Human Pose, Shape and Garment Style,” CVPR20

Saito, Shunsuke and Yang, Jinlong and Ma, Qianli and Black, Michael J. “Scanimate: : Weakly
Supervised Learning of Skinned Clothed Avatar Networks,” CVPR21

Qianli Ma, Jinlong Yang, Siyu Tang and Michael J. Black. “The Power of Points for Modeling
Humans in Clothing,” ICCV21

Zorah Lahner, Daniel Cremers, Tony Tung “DeepWrinkles: Accurate and Realistic Clothing
Modeling,” ECCV18

Ma, Qianli and Yang, Jinlong and Ranjan, Anurag and Pujades, Sergi and Pons-Moll, Gerard and
Tang, Siyu and Black, Michael J. “CAPE: Learning to Dress 3D People in Generative Clothing”
CVPR20

C. R. Qi, H. Su, K. Mo, and L. J. Guibas “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” arXiv preprint arXiv:1612.00593, 2016.

Igor Santesteban, Miguel A. Otaduy, and Dan Casas “Learning-Based Animation of Clothing for
Virtual Try-On,” Computer Graphics Forum (Proc. of Eurographics19)

Santesteban, Igor and Thürey, Nils and Otaduy, Miguel A. and Casas, Dan "Self-Supervised
Collision Handling via Generative 3D Garment Models for Virtual Try-On," CVPR21

Qianli Ma, Shunsuke Saito, Jinlong Yang, Siyu Tang and Michael J. Black. ”SCALE: Modeling
Clothed Humans with a Surface Codec of Articulated Local Elements,” CVPR21

Filename: eTryOn_D2.2.docx Page 54 of 55

D2.1 First working version of the avatar-garment simulation software
eTryOn-951908

Hugo Bertiche, Meysam Madadi, Sergio Escalera “CLOTH3D: Clothed 3D Humans,” ECCV20

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” NAACL-HLT (1) 2019

Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black,
Michael J. “SMPL:A Skinned Multi-Person Linear Model,” ACM Trans. Graphics (Proc.
SIGGRAPH Asia15)

Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape “shape
completion and animation of people,” ACM Trans. Graph. 24, 3 (Proc. Siggraph05)

Mahmood, Naureen and Ghorbani, Nima and Troje, Nikolaus F. and Pons-Moll, Gerard and
Black, Michael J. “AMASS: Archive of Motion Capture as Surface Shapes,” ICCV19

J. Rapin and O. Teytaud, “Nevergrad - A gradient-free optimization platform,” GitHub repository
2018, https://GitHub.com/FacebookResearch/Nevergrad

Filename: eTryOn_D2.2.docx Page 55 of 55

