
eTryOn - Virtual try-ons of garments enabling novel human fashion
interactions

Project Title: eTryOn - Virtual try-ons of garments enabling novel
human fashion interactions

Contract No: 951908 - eTryOn

Instrument: Innovation Action

Thematic Priority: H2020 ICT-55-2020

Start of project: 1 October 2020

Duration: 24 months

Deliverable No: D4.2

Initial eTryOn middleware and APIs
Due date of
deliverable:

30 September 2021

Actual submission
date:

7 October 2021

Version: Final

Main Authors: Anastasios Papazoglou Chalikias

Jim Downing

Ray Miller

Project funded by the European Community under the
H2020 Programme for Research and Innovation.

Ref. Ares(2021)6105987 - 07/10/2021

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Deliverable title Initial eTryOn middleware and APIs

Deliverable number D4.2

Deliverable version Final

Contractual date of
delivery

30 September 2021

Actual date of delivery 7 October 2021

Deliverable filename eTryOn_D4.2

Type of deliverable Report

Dissemination level PU

Number of pages 144

Workpackage WP4

Task(s) T4.2

Partner responsible Metail

Author(s) Jim Downing (Metail), Ray Miller (Metail), Anastasios
Papazoglou Chalikias (CERTH), Thomas De Wilde
(QuantaCorp), Jamie Sutherland (Mallzee)

Editor Elisavet Chatzilari (CERTH)

Reviewer(s) Anastasios Papazoglou Chalikias (CERTH)

Thomas De Wilde (QuantaCorp)

Abstract Documentation and API references for initial software
components on eTryOn

Keywords Architecture, integration, API

Filename: eTryOn_D4.1_final.docx Page 2 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Copyright

© Copyright 2020 eTryOn Consortium consisting of:

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH)
2. QUANTACORP (QC)
3. METAIL LIMITED
4. MALLZEE LTD (MLZ)
5. ODLO INTERNATIONAL AG (ODLO)

This document may not be copied, reproduced, or modified in whole or in part for any purpose
without written permission from the eTryOn Consortium. In addition to such written permission to
copy, reproduce, or modify this document in whole or part, an acknowledgement of the authors of
the document and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

Filename: eTryOn_D4.1_final.docx Page 3 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Deliverable history

Version Date Reason Revised by

1.0 2021-09-14 Table of contents Jim Downing

1.1 2021-09-29 Content

Jim Downing , Ray
Miller , Anastasios
Papazoglou Chalikias ,
Thomas De Wilde ,
Jamie Sutherland

1.2 2021-10-01 Snapshots of techdocs site. Final
revision Jim Downing

2 2021-10-04 Final version Elisavet Chatzilari

Filename: eTryOn_D4.1_final.docx Page 4 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

List of abbreviations and Acronyms

Abbreviation Meaning

KPI Key Performance Indicator

DevOps

A combination of Software Development and IT Operations.
DevOps is a set of practices that combines software development
and IT operations. It aims to shorten the systems development life
cycle and provide continuous delivery with high software quality.

DSL Domain Specific Language

API Application Programming Interface. In this document it exclusively
means a network interface.

AR
Augmented Reality - the composition of 3D objects into a scene
viewed through a camera and display that adds virtual objects to
the scene.

HTTP (S)

HyperText Transfer Protocol (Secure). HTTP is the protocol used
to transfer data over the web. It is part of the Internet protocol
suite and defines commands and services used for transmitting
web data.

NoSQL

Database management systems that do not use the relational
model or offer querying in Structured Query Language (SQL).
These often offer high throughput and easier updating and
reading.

VR Virtual Reality

ADR Architecture Decision Record

SDK
Software Development Kit. In this document this refers to a
component that can be incorporated into a larger software
container and runs in-process with it.

CLI Command Line Interface. A program interface operated by
issuing text commands through a terminal.

AWS Amazon Web Services. A collection of Infrastructure As A Service
products.

JWT JSON Web Tokens. A compact URL-safe means of representing
claims to be transferred between two parties

JSON
JavaScript Object Notation. A standard method of serialising data,
particularly when produced by or for consumption by JavaScript
programs.

IAM
Identity and Access Management is a framework of policies and
technologies that facilitates the management of electronic or
digital identities and access to resources.

CI/CD
Continuous Integration / Continuous Deployment. Build and
application deployment automation that is configured to run
automatically when certain events occur in source control, either
when any code is committed, or e.g. when a version is tagged.

CSV Comma Separated Values. A sort-of specified data encoding.

Filename: eTryOn_D4.1_final.docx Page 5 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

GCP Google Cloud Platform. A collection of Infrastructure As A
Service products.

UI / Ux
User Interface / User eXperience. Aspects of the application that
are the end user interacts with. Ux tends to put more emphasis on
the dynamic aspects, and UI more on the purely visible static
elements.

Pub/Sub
Publish / Subscribe. A form of messaging architecture in which
computer processes can publish messages (small chunks of
data) to one of a number of “topics”, and other processes can
receive these messages by “subscribing” to the topic.

REST
REpresentational State Transfer. A style of web programming
interface that is designed to work in particular sympathy with
HTTP and the rest of the web architecture.

Filename: eTryOn_D4.1_final.docx Page 6 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Table of Contents
1 Executive summary 13

2 Authentication and Authorization 14

3 Secret Manager 14

4 VR Designer System 14
4.1 User roles 14

4.2 Components 14

4.2.1 Body Model Service & React client SDK 14

4.2.2 VR Data Store 15

4.2.3 VStitcher headless 15

4.2.4 Identity Service 15

4.2.5 Secret Manager 15

4.2.6 Rating Retrieval Function 16

4.2.7 Token Service 16

4.2.8 VR Asset Store 16

4.2.9 Consumer Rating Prediction Service 16

4.2.10 Avatar Creation Function 16

4.2.11 Avatar Creation Service 17

5 DressMeUp System 17
5.1 User roles 17

5.2 Components 17

5.2.1 Odlo eCommerce product feed 17

5.2.2 Catalogue Updater 17

5.2.3 DressMeUp Admin 17

5.2.4 DressMeUp Asset Store 18

5.2.5 DressMeUp Data Store 18

5.2.6 Avatar Creation Function 18

5.2.7 Avatar Creation 19

5.2.8 DressMeUp (mobile) web app 19

5.2.9 DressMeUp mobile app - Body Model SDK, Body Model Service 19

5.2.10 Consumer Ratings Function 19

5.2.11 DressMeUp Composition Invoker 19

5.2.12 Composition Service 20

6 Magic Mirror System 20
6.1 User Roles 20

6.2 Components 20

Filename: eTryOn_D4.1_final.docx Page 7 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

6.2.1 Magic Mirror mobile app 20

6.2.2 Magic Mirror Admin CLI 20

6.2.3 Magic Mirror Data Store 21

6.2.4 Magic Mirror Asset Store 21

6.2.5 Token Service 22

6.2.6 Unity model creation fn 22

6.2.7 Garment model creation service 22

6.2.8 Body Model Service / Magic Mirror mobile app - body model SDK 22

6.2.9 Identity Service 22

6.2.10 Secret Manager 22

6.2.11 Catalogue Update Function 22

7 Appendix A - Relevant ADRs from https://etryon.gitlab.io/techdocs/ 23
7.1 ADR-0005 Use APIs 23

7.1.1 Context 23

7.1.2 Decision 23

7.1.3 Consequences 23

7.2 ADR-0006 Use an Application Development Platform 23

7.2.1 Context 23

7.2.2 Decision 24

7.2.3 Consequences 24

7.3 ADR-0010 QuantaCorp SDK 24

7.3.1 Context 24

7.3.2 Decision 25

7.3.3 Consequences 25

7.4 ADR-0011 Mallzee Api 25

7.4.1 Context 25

7.4.2 Decision 25

7.4.3 Authentication 26

7.4.4 Product predictions 26

7.4.5 Product recommendations 26

7.4.6 Consequences 26

7.5 ADR-0012 Metail Scanatar Creation 26

7.5.1 Context 26

7.5.2 Decision 26

7.5.3 Consequences 27

7.6 ADR-0013 Metail VStitcher Headless Service 27

7.6.1 Context 27

Filename: eTryOn_D4.1_final.docx Page 8 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

7.6.2 Decision 28

7.6.3 Consequences 28

7.7 ADR-0014 Scanatar Creation 28

7.7.1 Context 28

7.7.2 Decision 29

7.7.3 Consequences 29

7.8 ADR-0015 Token Service for QuantaCorp API 30

7.8.1 Context 30

7.8.2 Decision 30

7.8.3 Consequences 30

7.9 ADR-0016 Authentication and Authorization 30

7.9.1 Context 31

7.9.2 Decision 31

7.9.3 Consequences 31

7.10 ADR-0020 Product Recommendations 32

7.10.1 Context 32

7.10.2 Decision 32

7.10.2.1 Magic Mirror 32

7.10.2.2 Dress Me Up 32

7.10.2.3 Cold start 33

7.10.2.4 Event stream 33

7.10.3 Consequences 33

7.11 ADR-0021 Storage Path Scheme 33

7.11.1 Context 33

7.11.1.1 GDPR Compliance 33

7.11.1.2 Access Control 34

7.11.1.3 Event Pub/Sub 34

7.11.2 Decision 34

7.11.2.1 Examples 34

7.11.3 Conclusion 34

7.11.3.1 GDPR Compliance 35

7.11.3.2 Access Control 35

7.11.3.3 Event Pub/Sub 35

7.11.3.4 Subscribers will be able to filter the events they see using a prefix match. For
example, the filter attributes.eventType = "OBJECT_FINALIZE" AND
hasPrefix(attributes.objectId, "/avatar/") would limit the events seen to avatar creation
events. 35

7.11.4 Appendix 35

Filename: eTryOn_D4.1_final.docx Page 9 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

7.11.4.1 Storage Access Paths in Use Cases 35

7.11.4.1.1 Use Case 1 35

7.11.4.1.2 Use Case 2 36

7.11.4.1.3 Use Case 3 37

7.11.4.1.4 Term Index 38

7.12 ADR-0023 Use Custom Claims 38

7.12.1 Context 38

7.12.2 Decision 39

7.12.3 Consequences 39

7.13 ADR-0024 Unity Analytics Events to Server Event Bus 39

7.13.1 Context 39

7.13.2 Decision 40

7.13.3 Consequences 40

8 Appendix B - API specifications from https://etryon.gitlab.io/techdocs/ 40
8.1 Mallzee eTryOn API 40

8.2 Metail Scanatar Service 46

8.2.1 Input 47

8.2.2 Note on implementation 48

8.3 QuantaCorp API 49

8.3.1 Authorization API 49

8.3.2 Public API 52

8.4 UC2 DressMeUp Metail Composition Service 59

8.4.1 Input 59

8.4.2 Note on implementation 60

8.4.3 Operation 61

8.5 UC3 Garment Model Creation Service 61

8.5.1 Input 62

9 Appendix C - Architecture overview diagrams from https://etryon.gitlab.io/techdocs/ 64
9.1 VR Designer System (https://etryon.gitlab.io/techdocs/arch-diags/use-case-1/) 65

9.2 DressMeUp System (https://etryon.gitlab.io/techdocs/arch-diags/use-case-2/) 66

9.3 Magic Mirror System (https://etryon.gitlab.io/techdocs/arch-diags/use-case-3/) 67

10 Appendix D - Cloud Function specifications from https://etryon.gitlab.io/techdocs/ 68
10.1 Avatar Creation 68

10.1.1 Context 68

10.1.2 Use Case 1 68

10.1.3 Use Case 2 69

10.1.4 Use Case 3 69

Filename: eTryOn_D4.1_final.docx Page 10 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

10.1.5 Invocation 69

10.1.6 Input 69

10.1.7 Actions 70

10.1.8 Output 70

10.2 Catalogue Update 70

10.2.1 Context 70

10.2.2 Invocation 70

10.2.3 Input 70

10.2.4 Actions 70

10.2.5 Output 70

10.2.6 Repository 70

10.3 Consumer Ratings 70

10.3.1 Context 70

10.3.2 Invocation 71

10.3.3 Input 71

10.3.4 Actions 71

10.3.5 Output 71

10.3.6 Repository 71

10.4 DressMeUp Composition Invoker 72

10.4.1 Context 72

10.4.2 Invocation 72

10.4.3 Input 72

10.4.4 Input Function JSON Schema 72

10.4.5 Actions 74

10.4.6 Output 74

10.4.7 Implementation notes 74

10.5 Rating Retrieval 74

10.5.1 Context 74

10.5.2 Invocation 74

10.5.3 Input 75

10.5.4 Actions 75

10.5.5 Output 75

10.5.6 Repository 75

10.6 UC3 Unity Model Creation 75

10.6.1 Invocation 76

10.6.2 Input 76

10.6.3 Actions 76

Filename: eTryOn_D4.1_final.docx Page 11 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

10.6.4 Output 76

11 Appendix E - Firestore Database JSON Schemas from https://etryon.gitlab.io/techdocs/ 76
11.1 Firestore Database JSON Schemas 76

11.2 UC1 Schemas 76

11.2.1 Animations Schema 77

11.2.2 Avatars Schema 80

11.2.3 Garments Schema 82

11.2.4 Market Segments Schema 91

11.2.5 Market Segments Results Schema 93

11.2.6 User Info Schema 95

11.3 UC2 Schemas 96

11.3.1 Collection Items Schema 96

11.3.2 Garment Suggestions Schema 100

11.3.3 Garments Schema 102

11.3.4 User Info Schema 110

11.4 UC3 Schemas 112

11.4.1 Garments Schema 112

11.4.2 User Info Schema 123

12 Appendix F - Usage Scenarios from https://etryon.gitlab.io/techdocs/ 130
12.1 UC1 - VR Designer App 130

12.1.1 Sign up / Sign in screen 130

12.1.2 VR Designer app mockup 131

12.1.3 Usage Scenario 0.0 131

12.1.4 Usage Scenario 1.0: Garment Interaction 131

12.1.5 Usage Scenario 2.0: Mannequin Selection 132

12.1.6 Usage Scenario 3.0: Animation selection - playback 133

12.1.7 Usage Scenario 4.0: Export a creation 133

12.2 UC1 - VR Designer Backoffice App 133

12.2.1 Usage Scenario 1.0 138

12.2.2 Usage Scenario 2.0: Garments View Interactions 138

12.2.3 Usage Scenario 2.1: Add New Garment Item 139

12.2.4 Usage Scenario 3.0: Avatars View Interactions 140

12.2.5 Usage Scenario 3.1: Add New Avatar 140

12.2.6 Usage Scenario 4.0: Animations View Interactions 141

12.2.7 Usage Scenario 4.1: Add New Animation 141

12.2.8 Usage Scenario 5.0: Manage Market Segmentation 142

12.3 UC2 - Dress Me Up App 142

Filename: eTryOn_D4.1_final.docx Page 12 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

12.3.1 Usage Scenario 1.0: Sign up - Sign in 151

12.3.2 Usage Scenario 2.0: Create a new collection item 152

12.3.3 Usage Scenario 3.0: Collection interactions 153

12.3.4 Usage Scenario 4.0: Collection Item interactions 153

12.3.5 Usage Scenario 5.0: User Account actions 154

12.4 UC2 - DressMeUp Admin CLI 154

12.4.1 Scenario 1: Add Garment Browzwear file for a product in the catalogue 154

12.4.2 Scenario 2: Add Garment Browzwear file for a product not in the catalogue 155

12.5 UC3 - Magic Mirror App 157

12.5.1 Usage Scenario 1.0: Sign up - Sign in 168

12.5.2 Usage Scenario 2.0: Sidebar User Account Actions 169

12.5.3 Usage Scenario 2.0: Sidebar User Account Actions 169

12.5.4 Usage Scenario 2.1: Scan Body 170

12.5.5 Usage Scenario 3.0: Browse - Filter - Sort Garments 170

12.5.6 Usage Scenario 4.0: Add items to favorites 171

12.5.7 Usage Scenario 4.1: Favorites management 171

12.5.8 Usage Scenario 5.0: Garment Detailed view interactions 172

12.5.9 Usage Scenario 5.1: Try on a garment - actions (Real Time Fitting) 173

12.5.10 Usage Scenario 5.2: 3D Preview a garment & actions 173

12.6 UC3 - Magic Mirror Admin CLI 174

12.6.1 Scenario 1: Add Garment FBX file for a product in the catalogue 174

12.6.2 Scenario 2: Add Garment FBX file for a product not in the catalogue 174

13 Appendix G - SDK specifications from https://etryon.gitlab.io/techdocs/ 177
13.1 QuantaCorp Objective-C SDK 177

13.1.1 QCScanController 177

13.1.2 QCApiSession 178

13.1.3 QCScanDelegate 179

13.1.4 QCApiToken 180

13.1.5 QCCreateBodyDTO 181

13.1.6 QCPicture 182

13.1.7 QCScanError 182

1 Executive summary
The development of architecture in eTryOn is an iterative, ongoing process that aims to promote
communication and reduce technical risk on the project. We particularly focus on timely decisions of
technology choices and approaches, and on clarifying interfaces between components (especially
those between consortium partners).

Filename: eTryOn_D4.1_final.docx Page 13 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Most of the contents of this document are continuously updated and maintained through the project
technical documentation website at https://etryon.gitlab.io/techdocs/. To make this document
self-contained, we have appended snapshots of relevant parts of that site in appendix, but the live
site is canonical.

The following sections enumerate each software component in the eTryOn systems, describing the
location of running component examples, source code and API documentation. To understand how
these fit together, please refer to the architecture diagrams on that site:
https://etryon.gitlab.io/techdocs/arch-diags/

2 Authentication and Authorization
We make use of Google Cloud Platform’s Firebase Auth service for authentication and authorization
in all three use cases, as described in the following ADRs published on our techdocs site, and
appended to this document for convenience: -

● ADR-0006 Use an Application Development Platform
https://etryon.gitlab.io/techdocs/adr/0006-use-an-app-dev-platform/ (See 7.2 ADR-0006 Use
an Application Development Platform)

● ADR-0016 Authentication and Authorization
https://etryon.gitlab.io/techdocs/adr/0016-authentication-and-authorization/ (See 7.12
ADR-0016 Authentication and Authorization)

● ADR-0023 Use Custom Claims https://etryon.gitlab.io/techdocs/adr/0023-use-custom-claims/
(See 7.16 ADR-0023 Use Custom Claims)

3 Secret Manager
Secret manager is a Google Cloud Service for storing API keys, passwords, certificates, and other
sensitive data. We will use the secret manager to store AWS keys for calling Metail services, and
private keys for signing JWT claims. These secrets will be read by cloud functions, and access
controlled through the Google Cloud IAM system.

Provisioning of the secret manager for each use case will be via terraform scripts run by GitLab
CI/CD.

4 VR Designer System

4.1 User roles
The user roles in the VR designer app are:

Designer: a garment designer who uses Browzwear’s VStitcher to develop garment designs.

Product Manager: responsible for selecting designs and guiding their improvement and
development to optimise market success.

Users in both roles work for the same organisation, so the differentiation between them is
considered for usage scenarios, but there are no permissions restrictions for each of the roles.

4.2 Components

4.2.1 Body Model Service & React client SDK
The body model service is described in OpenAPI format at
https://etryon.gitlab.io/techdocs/apis/quantacorp/qc-api/ (Snapshot: 8.3 QuantaCorp API).

The specifications for the React client SDK are still a work in progress.

Filename: eTryOn_D4.1_final.docx Page 14 of 182

https://etryon.gitlab.io/techdocs/
https://etryon.gitlab.io/techdocs/arch-diags/
https://etryon.gitlab.io/techdocs/adr/0006-use-an-app-dev-platform/
https://etryon.gitlab.io/techdocs/adr/0016-authentication-and-authorization/
https://etryon.gitlab.io/techdocs/adr/0023-use-custom-claims/
https://etryon.gitlab.io/techdocs/apis/quantacorp/qc-api/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

4.2.2 VR Data Store
We use Google Firebase to host the VR Data Store, in a cloud Firestore Database. It consists of 6
collections as described below:

● Animations: Features user saved animations, uploaded from the VR Designer Config app.
● Avatars: Features user saved avatars, uploaded from the VR Designer Config app.
● Garments: Features user uploaded garments from the VR Designer Config app.
● Market Segments: User created Market Segment configurations to be used when uploading

a new garment entry, using the VR Designer Config app.
● Market Segment Results: Featuring results in the form of a score from Mallzee for a

garment entry under specific market segments.
● User Information: All user and preference data are saved here.

The Firestore Database schemas describing in depth the VR Data Store are located in
https://etryon.gitlab.io/techdocs/json-schemas/use-case-1/ and are included in ADR-0021 Storage
Path Scheme.

4.2.3 VStitcher headless
Closed source

This component won’t be delivered in the initial system as VStitcher is not yet able to create alembic
animations in headless mode. Once it does, the component will be introduced with an execution
script as follows:

Input ● Reference to avatar to use for garment (presigned URL to .fbx file)
● Name of animation to use (String)
● Reference to garment file (presigned URL to .bw file)
● Reference to write animation to (presigned URL)

Operation 1. Download .bw file.
2. Download avatar file.

Start VStitcher
3. Open .bw file
4. Add avatar to .bw file.
5. Arrange garment on avatar
6. Dress avatar
7. Select animation from avatar file
8. Dress (simulate) whilst running animation
9. Export simulation results as ABC (Alembic file) and save locally
10. Upload animation to results location (presigned URL)

Output ● Error code / success code.
● Results are written to presigned URL as a side-effect.

4.2.4 Identity Service
The Identify Service is not a deployable component, but rather a set of policies on how we use
Firebase Auth. Further description can be found in Authentication and Authorization.

4.2.5 Secret Manager
See 3 Secret Manager.

Filename: eTryOn_D4.1_final.docx Page 15 of 182

https://etryon.gitlab.io/techdocs/json-schemas/use-case-1/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

4.2.6 Rating Retrieval Function
A Google Cloud Function that is hosted on Firebase. It takes as input market segment data for each
garment configuration, sends it to a Mallzee service and receives a performance score in
percentage about each garment-market segment configuration. The performance score predicts
how successful this garment entry will be in the selected market segment.

Input ● Reference to a garment file.
● Market segment properties (Age Target, color, price).

Operation 1. The function sends a reference URL of a garment along with its market
segment to the Consumer Rating Prediction Service.

2. It receives a result in the form of a percentage score.
3. The function then writes to the VR Data Store, an entry that features the

garment ID, the market segment ID, and the performance score.

Output ● Error code / success code.
● Results are written to market_segment_results Firebase collection in VR

Data Store.

In depth documentation in: https://etryon.gitlab.io/techdocs/cloud-functions/rating-retrieval/ (See
10.5 Rating Retrieval)

The function repository is located in: https://gitlab.com/etryon/uc1/gcf-rating-retrieval

4.2.7 Token Service
The Token Service is implemented as a Google Cloud Function. It’s operation is specified in
https://etryon.gitlab.io/techdocs/adr/0015-token-service-for-quantacorp-api/ (See ADR-0015 Token
Service for QuantaCorp API).

4.2.8 VR Asset Store
We use Google Firebase Storage to store all asset files in an appropriate structure for easier
identification and management purposes. The folder structure used for every file needed is
described in the following ADR published on our techdocs site, and appended to this document for
convenience:

● ADR-0021 Storage Path Scheme
https://etryon.gitlab.io/techdocs/adr/0021-storage-path-scheme-decision/#storage-access-pa
ths-in-use-cases (See ADR-0021 Storage Path Scheme)

4.2.9 Consumer Rating Prediction Service
The consumer rating prediction service is specified at
https://etryon.gitlab.io/techdocs/apis/mallzee/1.0.0/ (Snapshot: 8.1 Mallzee eTryOn API).

4.2.10 Avatar Creation Function
Open Source.

An up-to-date specification of the function is at
https://etryon.gitlab.io/techdocs/cloud-functions/avatar-creation/, and a snapshot is included as 10.1
Avatar Creation.

Filename: eTryOn_D4.1_final.docx Page 16 of 182

https://etryon.gitlab.io/techdocs/cloud-functions/rating-retrieval/
https://gitlab.com/etryon/uc1/gcf-rating-retrieval
https://etryon.gitlab.io/techdocs/adr/0015-token-service-for-quantacorp-api/
https://etryon.gitlab.io/techdocs/adr/0021-storage-path-scheme-decision/#storage-access-paths-in-use-cases
https://etryon.gitlab.io/techdocs/adr/0021-storage-path-scheme-decision/#storage-access-paths-in-use-cases
https://etryon.gitlab.io/techdocs/apis/mallzee/1.0.0/
https://etryon.gitlab.io/techdocs/cloud-functions/avatar-creation/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

4.2.11 Avatar Creation Service
Closed source

An up-to-date specification of the service is at
https://etryon.gitlab.io/techdocs/apis/metail/scanatar-service/, and a snapshot is included as 8.2
Metail Scanatar Service.

5 DressMeUp System

5.1 User roles
The user roles in the Dress Me Up system are

eTryOn Project Staffer Responsible for uploading garment content into the system. In a production
system this would be replaced by someone at an apparel brand, but it’s not clear who in a brand
organisation this would be.

Influencer Any social media user who likes to share images of themselves wearing fashion.

We will require Influencers to register and authenticate with the system. There will be strong auth
controls on any content they upload, and preventing influencers and unauthenticated users from
accessing brand-proprietary data.

5.2 Components

5.2.1 Odlo eCommerce product feed
ODLO provides a product feed in the form of a CSV file, that is updated daily with the latest garment
information. The product feed is located at a provided URL location.

5.2.2 Catalogue Updater
A Google Cloud function has been utilized to parse information from the Odlo web feed and update
the garment database in the Dress Me Up Data Store. The cloud function runs once per day, reads
the updated CSV file and makes the necessary changes in the Google Firestore Database of the
project.

Input ● Parsed CSV file

Operation 1. The service triggers a function once a day that retrieves and parses the
CSV file from the link.

2. It then uploads new entries and refreshes the status of the garments.

Output ● Error code / success code.
● Results are written to garments Firebase collection in the VR Data Store.

In depth documentation in: https://etryon.gitlab.io/techdocs/cloud-functions/catalogue-update/

The function repository is located at https://gitlab.com/etryon/shared/gcf-catalogue-updater.

5.2.3 DressMeUp Admin
Open source CLI. See Usage Scenarios and Source Code Repository
NAME:

DressMeUp Admin CLI - Command-line tool for DressMeUp administrators

Filename: eTryOn_D4.1_final.docx Page 17 of 182

https://etryon.gitlab.io/techdocs/apis/metail/scanatar-service/
https://etryon.gitlab.io/techdocs/cloud-functions/catalogue-update/
https://gitlab.com/etryon/shared/gcf-catalogue-updater
https://etryon.gitlab.io/techdocs/usage-scenarios/5-dressmeupadmin/
https://gitlab.com/etryon/use-case-2/admin-cli

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

USAGE:

dress-me-up-admin command [command options] [arguments...]

COMMANDS:

init Initialize the CLI

add-catalogue-garment Add Browzwear file for a product that is
in

the catalogue

add-non-catalogue-garment Add Browzwear file and product details for

a product that is not in the catalogue

help, h Shows a list of commands or help for one

command

GLOBAL OPTIONS:

--help, -h show help (default: false)

5.2.4 DressMeUp Asset Store
We use Google Firebase Storage to store all asset files in an appropriate structure for easier
identification and management purposes. The folder structure used for every file needed is
described in the following ADR published on our techdocs site, and appended to this document for
convenience:

● ADR-0021 Storage Path Scheme -
https://etryon.gitlab.io/techdocs/adr/0021-storage-path-scheme-decision/#storage-access-pa
ths-in-use-cases

5.2.5 DressMeUp Data Store
We use Google Firebase to host the DressMeUp Data Store, in a cloud Firestore Database. It
consists of 3 collections as described below:

● Collection Items: Features the created collection items of each user, that consists of all the
information needed for the synthesized media entries.

● Garment Suggestions: Features the suggested garments list for each user, that is created
by Mallzee using as input past garment interactions.

● Garments: A collection that provides all the information needed about available garments
from ODLO that are used in the DressMeUp application.

● User Information: Features all user information that is needed for the application to work,
like gender, size and generated avatar.

The Firestore Database schemas describing in depth the DressMeUp Data Store are located in
https://etryon.gitlab.io/techdocs/json-schemas/use-case-2/ and are included in 11.3 UC2 Schemas.

Filename: eTryOn_D4.1_final.docx Page 18 of 182

https://etryon.gitlab.io/techdocs/adr/0021-storage-path-scheme-decision/#storage-access-paths-in-use-cases
https://etryon.gitlab.io/techdocs/adr/0021-storage-path-scheme-decision/#storage-access-paths-in-use-cases
https://etryon.gitlab.io/techdocs/json-schemas/use-case-2/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

5.2.6 Avatar Creation Function
Open source

An up-to-date specification of the function is at
https://etryon.gitlab.io/techdocs/cloud-functions/avatar-creation/, and a snapshot is included as 10.1
Avatar Creation.

5.2.7 Avatar Creation
An up-to-date specification of the service is at
https://etryon.gitlab.io/techdocs/apis/metail/scanatar-service/, and a snapshot is included as 8.2
Metail Scanatar Service.

5.2.8 DressMeUp (mobile) web app
The Dress Me Up application is a React.JS browser app with an optimized user interface to run on
mobile devices emulating a mobile application experience. A first version of the application is
deployed in: https://etryon-h2020.web.app

The usage scenarios are described in:
https://etryon.gitlab.io/techdocs/usage-scenarios/2-dressmeup/

The application source code repository is located in: https://gitlab.com/etryon/dress-me-up

5.2.9 DressMeUp mobile app - Body Model SDK, Body Model Service
See 4.2.1 Body Model Service & React client SDK .

5.2.10 Consumer Ratings Function
A Google Cloud Function that handles the call to the Consumer Rating Prediction Service, by
providing the necessary information and then writing back the results to the Dress Me Up Data
Store.

Input ● An array of garment IDs that correspond to the ones that the user has
selected to use in collection items.

Operation 1. The service creates an array of garment IDs based on a user's active
collection.

2. The service sends the array to the Prediction service and gets back a list of
garment IDs for a specific user.

3. The returned data is saved into the Dress Me Up Data Store.

Output ● Error code / success code.
● Results are written to garment_suggestions Data Store collection.

In depth documentation in: https://etryon.gitlab.io/techdocs/cloud-functions/consumer-ratings/
(Snapshot: 10.3 Consumer Ratings)

The function repository is located in https://gitlab.com/etryon/use-case-2/gcf-consumer-ratings

5.2.11 DressMeUp Composition Invoker
Up-to-date documentation can be found at
https://etryon.gitlab.io/techdocs/cloud-functions/dress-me-up-composition/ . A snapshot is given in
10.4 DressMeUp Composition Invoker.

Filename: eTryOn_D4.1_final.docx Page 19 of 182

https://etryon.gitlab.io/techdocs/cloud-functions/avatar-creation/
https://etryon.gitlab.io/techdocs/apis/metail/scanatar-service/
https://etryon-h2020.web.app
https://etryon.gitlab.io/techdocs/usage-scenarios/2-dressmeup/
https://gitlab.com/etryon/dress-me-up
https://etryon.gitlab.io/techdocs/cloud-functions/consumer-ratings/
https://gitlab.com/etryon/use-case-2/gcf-consumer-ratings
https://etryon.gitlab.io/techdocs/cloud-functions/dress-me-up-composition/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

5.2.12 Composition Service
Up to date documentation can be found at
https://etryon.gitlab.io/techdocs/apis/metail/uc2-composition-service/ . A snapshot is given in 8.4
UC2 DressMeUp Metail Composition Service.

6 Magic Mirror System

6.1 User Roles
The main roles in the Magic Mirror system are that of

3D Technical designer: Responsible for uploading 3D garment data into the system

User An end consumer who browses the magic mirror system, selects styles and tries them on.

As in the DressMeUp system, there will be strong security constraints around each user’s data,
particularly because there is PII under long-term storage. There also need to be careful constraints
around the proprietary data uploaded by 3D technical designer, before it is transformed into
shareable 3D assets by the system.

6.2 Components

6.2.1 Magic Mirror mobile app
Open Source

One of the more important API aspects of this app is how analytics events will be sent to the server,
and how they can then be made available to Mallzee systems in order for them to train their
preference prediction models. This is covered in
https://etryon.gitlab.io/techdocs/adr/0024-uc3-analytics-events-to-server-eventbus-decision/
(Snapshot: 7.13 ADR-0024 Unity Analytics Events to Server Event Bus).

Google Firebase Analytics are used to track usage behavior and log a variety of events. This is
implemented through the SDK provided by Google for using Firebase within Unity applications.

The Firebase SDK offers support for logging two primary types of information:

- Events: log user actions, system events, errors.
- User properties: attributes that describe user base, such as geographical information and

language preference

In the context of the Magic Mirror mobile app, a variety of events will be, such as user clicks and
user engagement time. Moreover, some user properties will be recorded, too, such as user
Operating System, OS Version, geographical information, gender, and age.

The Firebase Analytics data are connected with Google Cloud Big Query1, which makes them
queryable. Google Cloud’s Big Query is a serverless, highly scalable, and cost-effective multicloud
data warehouse. It features a REST API which can be called to fetch our Firebase Analytics data.

We will be using the integration between Firebase Analytics and Google Cloud Big Query in order to
feed Mallzee’s user-specific garment suggestions function, with the events from the Magic Mirror
app.

6.2.2 Magic Mirror Admin CLI
Open Source CLI. See Usage Scenarios and Source Code Repository.

1 https://cloud.google.com/bigquery

Filename: eTryOn_D4.1_final.docx Page 20 of 182

https://etryon.gitlab.io/techdocs/apis/metail/uc2-composition-service/
https://etryon.gitlab.io/techdocs/adr/0024-uc3-analytics-events-to-server-eventbus-decision/
https://etryon.gitlab.io/techdocs/usage-scenarios/6-magicmirroradmin/
https://gitlab.com/etryon/use-case-3/admin-cli
https://cloud.google.com/bigquery

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

NAME:

MagicMirror Admin CLI - Command-line tool for MagicMirror

administrators

USAGE:

magic-mirror-admin command [command options] [arguments...]

COMMANDS:

init Initialize the CLI

add-catalogue-garment Add FBX file for a product that is in the

catalogue

add-non-catalogue-garment Add FBX file and product details for a

product that is not in the catalogue

help, h Shows a list of commands or help for one

command

GLOBAL OPTIONS:

--help, -h show help (default: false)

6.2.3 Magic Mirror Data Store
We use Google Firebase to host the Magic Mirror Data Store, in a cloud Firestore Database. It
consists of 2 collections as described below:

● Garments: A collection that provides all the information needed about available garments
from ODLO that are used in the Magic Mirror application.

● User Information: Features all user information and app configuration that is needed for the
application to work.

The Firestore Database schemas describing in depth the Magic Mirror Data Store are located in
https://etryon.gitlab.io/techdocs/json-schemas/use-case-3/ and are included in 11.4 UC3 Schemas.

6.2.4 Magic Mirror Asset Store
We use Google Firebase Storage to store all asset files in an appropriate structure for easier
identification and management purposes. The folder structure used for every file needed is
described in the following ADR published on our techdocs site, and appended to this document for
convenience:

● ADR-0021 Storage Path Scheme
https://etryon.gitlab.io/techdocs/adr/0021-storage-path-scheme-decision/#storage-access-pa
ths-in-use-cases (Snapshot: 7.11 ADR-0021 Storage Path Scheme)

Filename: eTryOn_D4.1_final.docx Page 21 of 182

https://etryon.gitlab.io/techdocs/json-schemas/use-case-3/
https://etryon.gitlab.io/techdocs/adr/0021-storage-path-scheme-decision/#storage-access-paths-in-use-cases
https://etryon.gitlab.io/techdocs/adr/0021-storage-path-scheme-decision/#storage-access-paths-in-use-cases

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

6.2.5 Token Service
The Token Service is implemented as a Google Cloud Function. It’s operation is specified in
(https://etryon.gitlab.io/techdocs/adr/0015-token-service-for-quantacorp-api/ Snapshot: 7.12
ADR-0023 Use Custom Claims).

6.2.6 Unity model creation fn
An up-to-date specification of the function is at
https://etryon.gitlab.io/techdocs/cloud-functions/uc3-unity-model-creation/ (Snapshot: 10.6 UC3
Unity Model Creation).

6.2.7 Garment model creation service
An up-to-date specification of the function is at
https://etryon.gitlab.io/techdocs/apis/metail/uc3-garment-model-creation/ (Snapshot: 8.5 UC3
Garment Model Creation Service).

6.2.8 Body Model Service / Magic Mirror mobile app - body model SDK
The API services used will be identical in specification and function as that described in 4.2.1 Body
Model Service & React client SDK .

The SDK specifications are described at
https://etryon.gitlab.io/techdocs/sdks/qc-obj-c-sdk/qc-obj-c-sdk/ (Snapshot: 13.1 QuantaCorp
Objective-C SDK).

6.2.9 Identity Service
The Identify Service is not a deployable component, but rather a set of policies on how we use
Firebase Auth. Further description can be found in Authentication and Authorization.

6.2.10 Secret Manager
See 3 Secret Manager.

6.2.11 Catalogue Update Function
A Google Cloud function has been utilized to parse information from the Odlo web feed and update
the garment database in the Dress Me Up Data Store. The cloud function runs once per day, reads
the updated CSV file and makes the necessary changes in the Google Firestore Database of the
project.

Input ● Parsed CSV file

Operation 3. The service triggers a function once a day that retrieves and parses the
CSV file from the link.

4. It then uploads new entries and refreshes the status of the garments.

Output ● Error code / success code.
● Results are written to garments Firebase collection in the Data Store.

In depth documentation in: https://etryon.gitlab.io/techdocs/cloud-functions/catalogue-update/
(Snapshot: 10.2 Catalogue Update).

The function repository is located at https://gitlab.com/etryon/shared/gcf-catalogue-updater.

Filename: eTryOn_D4.1_final.docx Page 22 of 182

https://etryon.gitlab.io/techdocs/adr/0015-token-service-for-quantacorp-api/
https://etryon.gitlab.io/techdocs/cloud-functions/uc3-unity-model-creation/
https://etryon.gitlab.io/techdocs/apis/metail/uc3-garment-model-creation/
https://etryon.gitlab.io/techdocs/sdks/qc-obj-c-sdk/qc-obj-c-sdk/
https://etryon.gitlab.io/techdocs/cloud-functions/catalogue-update/
https://gitlab.com/etryon/shared/gcf-catalogue-updater

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

7 Appendix A - Relevant ADRs from https://etryon.gitlab.io/techdocs/
7.1 ADR-0005 Use APIs

Date 2021-05-11

Status Accepted

7.1.1 Context
Some functionality for the eTryOn project will be provided by commercial companies in the
consortium (QuantaCorp, Mallzee, and Metail). These companies will not in general want to make
details of their implementations public, but instead present a “black box” interface.

7.1.2 Decision
We will access services from partner companies through HTTP-based APIs.

7.1.3 Consequences
We need to ensure these third-party APIs are documented so they can be consumed by eTryOn
applications.

Partner companies do not need to disclose implementation details.

The systems behind these APIs can be deployed and updated independently of eTryOn project
resources, so long as API-compatibility is maintained.

Control of these services remains in the hands of each partner company. Note that this implies
some risk to the project as, by definition, these services are not under the control of the project.

7.2 ADR-0006 Use an Application Development Platform

Date 2021-02-09

Status Accepted

7.2.1 Context
Mobile and web application development are increasingly achieved by using high level services
provided by cloud service providers like Google Cloud Platform (GCP) or Amazon Web Services
(AWS). This has led to the development of SDKs and tooling that make it easier to compose these
services into working applications through simple provisioning and client-side support libraries.
Essentially they provide a path of least resistance for many concerns in application development for
functions from object storage to application deployment, analytics to authentication.

The two application development platforms we considered are AWS Amplify and Google Firebase.
Both of these make application development easier and are backed by rich service offerings in their
respective cloud platforms.

Filename: eTryOn_D4.1_final.docx Page 23 of 182

https://aws.amazon.com/amplify/
https://firebase.google.com/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Unity game engine will be the main development platform for the eTryOn project so we created two
minimal Unity applications using the aforementioned toolkits to compare the two solutions in terms
of ease of use, support, and capabilities. The demo applications use simple operations, namely an
authentication process and communication with cloud storage for upload and download operations.

● Firebase was easy to set up, and has an up-to-date supported SDK for Unity.

● The aws.net SDK has support for Unity but requires a tedious and error-prone set-up
process.

● The Firebase platform is easier to use with a much shorter learning curve when it comes to
typical backend services such as authentication, analytics, cloud storage and databases.

● The AWS SDK offers more functionality, which at the moment do not seem to be of any
particular use for our case.

● There are more resources (such as documentation and community guides) available for the
Firebase than for Amplify.

Note: Amazon’s Unity mobile SDK has not been mentioned so far since it has not been updated for
5 years and is now considered deprecated. The suggested Unity SDK from Amazon is the aws.net
SDK considered above.

7.2.2 Decision
We will use Firebase for the eTryOn project.

7.2.3 Consequences
The documentation and community resources for Firebase will allow developers to get up and
running quickly.

We will be able to use up-to-date and supported SDKs to consume cloud services in our Unity and
Javascript applications.

The tooling and documentation available for Firebase will free up developers to focus on core facets
of the applications.

Use of Firebase implies that we will use GCP-backed services for authentication (Firebase Auth),
object storage (Cloud Storage), and NoSQL database (Cloud Firestore).

Consuming cloud services directly (via the provided SDK) means we do not need to write dedicated
APIs for simple things like object and metadata storage.

7.3 ADR-0010 QuantaCorp SDK

Date 2021-03-09

Status Accepted

7.3.1 Context
The eTryOn project will be developing multiple applications that require an avatar to work or to
enrich the user experience. The creation of this avatar starts with the capture of two images. Those
two images are sent as input to the QuantaCorp pipeline. After processing, the output of that
pipeline is a 3D model.

Filename: eTryOn_D4.1_final.docx Page 24 of 182

https://unity.com/
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/storage
https://firebase.google.com/docs/firestore

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

QuantaCorp’s current technology portfolio consists of an API, a web portal for B2B customers, and
a mobile app for B2B customers on iOS and iPadOS.

Given that eTryOn is customer focused, we need a solution that will meet customer expectations
while keeping the impact on QuantaCorp’s architecture to a minimum.

To reach a broad public, we need to expand to other platforms like the web and Android. We should
avoid having to make the user open a separate app to capture the required photos. Having to switch
apps can have a negative effect on the overall user experience. Because there is no direct
communication channel as there is in a B2B environment, guidance during a scan becomes very
important. The user will also expect the scan interface to work in the same fashion across platforms.
If this experience cannot be guaranteed to be similar, guidance during a scan becomes a must.

Developers should be provided with libraries that facilitate the consumption of the QuantaCorp API,
and allow them to integrate QuantaCorp’s pipeline in a loosely coupled way.

7.3.2 Decision
We will create an SDK for Android, iOS and web that will consume the QuantaCorp API and will
include a scan component to facilitate photo capture.

7.3.3 Consequences
By creating an SDK for the various eTryOn apps, scanning functionality will be implemented in the
apps themselves. This way we avoid having to force the user to use a separate app.

The SDK will be implemented in Unity (cf ADR-0006) which could pose a small development
challenge.

We reduce the complexity of the project’s architecture by avoiding the integration of yet another
application, and yet another system.

7.4 ADR-0011 Mallzee Api

Date 2021-05-11

Status Proposed

7.4.1 Context
As part of the eTryOn project it requires that clothing products should be evaluated for product
market fit against target demographics and provide recommendations of other products based on a
given product.

Mallzee has a datapool of consumer options again 4 million+ products and has experience in
attempting to predict future product performance by using consumer data captured via the Mallzee
shopping app.

Mallzee is looking to provide access to these insights so that other companies can benifit from the
data and models produced. This in turn allows companies to make smarter decisions about the
types of products they want to produce by using the vast consumer data available via the Mallzee
apps.

7.4.2 Decision

Filename: eTryOn_D4.1_final.docx Page 25 of 182

https://etryon.gitlab.io/techdocs/adr/0006-use-an-app-dev-platform/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Mallzee will produce an API that will be available to the eTryOn consortium. The API will consisit of
a minimum of two endpoints to provide access to the product predictions and the product
recommender.

7.4.3 Authentication
This Mallzee API is only required to be accessed via internal services. Not directly from the client
applications. We will use a simple header based authentication method using the key x-api-key
which will contain a string access key assigned to every consumer of the API. This allows Mallzee to
track usage and identify which account is accessing the API.

The eTryOn services will store the given key in the Google Secret Manager so that access can be
given to any service within the platform.

7.4.4 Product predictions
This endpoint will require that the user send product data and target market data so that the system
can predict the popularty of the product and return a confidence score of how likely that product is
going to prove popular with the target demographic.

7.4.5 Product recommendations
This endpoint will require that the consumer of the API sends the required product information along
with the end users market preferences. This system will return an array of recommended product
IDs based on the information given that will allow the consumer to fetch product information on the
recommended products.

These API will be detailed in OpenAPI Spec 3.0 and can be found here (Link to be provided)

7.4.6 Consequences
By creating a general purpose API we can supply product performance predicitions to all
applications that require it as part of the overall project.

7.5 ADR-0012 Metail Scanatar Creation

Date 2021-05-17

Status Proposed

7.5.1 Context
The scanatars created by the QuantaCorp Body Model Service are post-processed by a Metail
pipeline that performs clean-up of the scan, landmark detection, mesh fitting, and skeleton fitting.
The output from the Metail pipeline is a Unity-compatible avatar that can be used in eTryOn
applications. We would like the Metail pipeline to run every time a new QuantaCorp scanatar is
uploaded to Cloud Storage.

7.5.2 Decision
Metail will implement an AWS Step Function to run the Metail pipeline.

This step function will:

Filename: eTryOn_D4.1_final.docx Page 26 of 182

https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

● Read additional parameters (such as gender and height) from its invocation parameters;

● Read the QuantaCorp scan from Cloud Storage using a pre-signed URL;

● Run the Metail Scanatar Pipeline on this input;

● Write the finished scanatar to Cloud Storage using a pre-signed URL.

We will create an eTryOn service user in the Metail AWS IAM account and grant this user
permissions to invoke the step function.

We will generate access keys for the AWS service user and store them in Google Secret Manager
so they are available to services running in the eTryOn Google Cloud project.

We will implement a Google Cloud Function and configure a trigger to invoke this function whenever
a QuantaCorp scanatar is written to Cloud Storage. This cloud function will:

● Create a record in Cloud Firestore to track the pending avatar creation;

● Create pre-signed Cloud Storage URLs for the input (QuantaCorp scanatar) and output
(Unity-compatible avatar);

● Read the configured AWS keys from Secret Manager;

● Invoke the Metail Step Function and pass the pre-signed input/output URLs and additional
metadata (such as the user’s height and gender) as parameters.

We will implement another Google Cloud Function to be triggered when the finished avatar is written
to Cloud Storage. This function will update the Cloud Firestore record to update the status of the
new avatar.

7.5.3 Consequences
Providing Metail AWS credentials to eTryOn middleware functions enables them to call AWS APIs
directly.

Using pre-signed URLs for input and output avoids us having to share credentials in the opposite
direction.

Tracking scanatar creation status in Cloud Firestore allows client applications to show jobs in
progress and be notified when the status changes.

We will have to ensure the pre-signed URLs have a long enough expiry for the Metail pipeline to
complete and write its output back to Cloud Storage.

We will need a mechanism to signal an error if the Metail Pipeline cannot process the input
QuantaCorp scanatar.

7.6 ADR-0013 Metail VStitcher Headless Service

Date 2021-05-17

Status Proposed

7.6.1 Context
Several eTryOn use cases require background processing of Browzwear files to provide
functionality (for example, to generate the Alembic animation file for use case 1). Processing of a

Filename: eTryOn_D4.1_final.docx Page 27 of 182

https://cloud.google.com/secret-manager

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Browzwear file will always be triggered by a middleware function when a Browzwear file is uploaded
to Cloud Storage.

7.6.2 Decision
We will follow the pattern described in ADR 12 with a Google Cloud Function in the eTryOn account
invoking a Step Function in the Metail AWS account to process Browzwear files.

Metail will implement an AWS Step Function to read input from, and write output to, Cloud Storage
using pre-signed URLs. The step function will invoke the desired script to run in VStitcher Headless
running on an EC2 Windows instance.

7.6.3 Consequences
We will have to define the processing required by each use case and encapsulate this as scripts
that can be run by VStitcher Headless.

We will need a way to identify which script to invoke for each use case (e.g. through a naming
convention in Cloud Storage).

If we are unable to secure a license to run VStitcher Headless, the step function will have to initiate
a manual process where jobs are completed by a human using VStitcher Desktop.

7.7 ADR-0014 Scanatar Creation

Date 2021-05-11

Status Accepted

Amended By ADR-0015 Token Service for QuantaCorp API

Amended By ADR-0021 Storage Path Scheme

7.7.1 Context
In ADR-0010 QuantaCorp propose to write a cross-platform SDK (for Android, iOS and web) that
will facilitate photo capture and interact with the QuantaCorp API. This document goes into more
detail about the architecture supporting this SDK and the scanatar creation process.

We assume that all of the applications using the SDK will require the user to login using Firebase
authentication. This gives the applications access to Cloud Storage and an ID token that can be
used to interact with other APIs (including the QuantaCorp API).

Filename: eTryOn_D4.1_final.docx Page 28 of 182

https://etryon.gitlab.io/techdocs/adr/0012-metail-scanatar-creation/
https://browzwear.com/headless-engine/
https://etryon.gitlab.io/techdocs/adr/0015-token-service-for-quantacorp-api/
https://etryon.gitlab.io/techdocs/adr/0021-storage-path-scheme-decision/
https://etryon.gitlab.io/techdocs/adr/0010-quantacorp-sdk/
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/storage

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

We also assume that the QuantaCorp SDK will have access to client-side functionality of the
Firebase SDK, as all of the client applications will use the Firebase SDK.

7.7.2 Decision
The QuantaCorp SDK will use the ID token obtained via Firebase Auth as a bearer token to
authenticate with the QuantaCorp API. It is the responsibility of the QuantaCorp API to validate this
token.

The application implementing the SDK will generate pre-signed URLs to store the output from the
QuantaCorp system in Cloud Storage owned by eTryOn. We will use a naming scheme that stores
all of the user’s files under a prefix of their Firebase user ID, which simplifies the authorization rules
controlling access to Cloud Storage.

The application will prompt the user to enter their height and gender and save these as metadata to
Cloud Firestore.

The SDK will upload the photos required for avatar generation directly to the QuantaCorp API along
with the metadata, the pre-signed URLs and the ID token.

On successful upload of metadata and photos, the QuantaCorp system will generate a thumbnail
from the front view photo and a OBJ file for the scanatar.

The QuantaCorp system will use the pre-signed URLs obtained from the client to write the output
thumbnail and OBJ file directly to the user’s eTryOn Cloud Storage area.

Successful creation of the OBJ file in Cloud Storage will trigger a Cloud Function to hand off the
OBJ file to Metail’s systems for rigging and creation of the final scanatar. This Cloud Function will
read the user’s height and gender from Firestore to pass to the Metail API.

The Metail system will also use a pre-signed URL to fetch the input from the user’s Cloud Storage
and write back the rigged scanatar.

7.7.3 Consequences
● The eTryOn systems will not handle the user’s photos, so we avoid unnecessary handling of

personally identifying data.
● Once the thumbnail and scanatar have been written successfully to the user’s eTryOn Cloud

Storage, the input photographs can be deleted from QuantaCorp’s systems.
● Terms and conditions for applications using the QuantaCorp SDK to generate an avatar

must make explicit the retention period for the user’s photos, whether they are deleted
immediately on completion of avatar creation or retained; if retained, the terms and
conditions must state the reason for retention.

● Using pre-signed URLs minimizes the trust between systems and removes the need to issue
service credentials.

● The Cloud Function invoking the Metail API may need credentials as this is the one place we
don’t have access to the user’s ID token.

Filename: eTryOn_D4.1_final.docx Page 29 of 182

https://firebase.google.com/docs/auth/admin/verify-id-tokens
https://firebase.google.com/docs/auth/admin/verify-id-tokens
https://firebase.google.com/docs/firestore

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

7.8 ADR-0015 Token Service for QuantaCorp API

Date 2021-05-14

Status Proposed

Amends ADR-0014 Scanatar Creation

7.8.1 Context
The QuantaCorp API needs to be able to validate that calls are coming from a legitimate eTryOn
user. In ADR 0014 we proposed using the ID token returned by Firebase Auth as a bearer token to
authenticate to the QuantaCorp API, but as this is the same token used to authenticate to Firebase
services it should not be exposed to a third party API.

7.8.2 Decision
We will implement a Google Cloud Function to generate short-lived tokens with scope limited to the
QuantaCorp API.

These will be JSON Web Tokens containing the ID of the authenticated user in the id field and
QuantaCorp in the audience field, and will be valid for 15 minutes.

We will generate a key pair for signing and validating the tokens. We will share the public key with
QuantaCorp so they can verify the signature.

7.8.3 Consequences
Applications using the QuantaCorp SDK will have to retrieve a token (by calling the Cloud Function)
before interacting with the QuantaCorp API. They will authenticate to the Cloud Function using the
ID token retrieved from Firebase Auth.

The QuantaCorp API will be able to identify the user from the id field in the token claims. This claim
can be validated by verifying the token signature.

7.9 ADR-0016 Authentication and Authorization

Date 2021-05-14

Status Proposed

Filename: eTryOn_D4.1_final.docx Page 30 of 182

https://etryon.gitlab.io/techdocs/adr/0014-scanatar-creation/
https://etryon.gitlab.io/techdocs/adr/0014-scanatar-creation/
https://jwt.io/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

7.9.1 Context
In ADR 0006 a decision was made to use the Firebase platform to build the client-facing
applications. This platform includes the Firebase Auth component which provides backend services,
SDKs, and ready-made UI libraries for account management and authentication.

Even using a drop-in framework like this we need to understand how accounts will be created and
how permissions will be granted.

We identified the following requirements for the three use cases:

UC1: VR Designer

● Account creation and permission granting will be done by eTryOn staff.
● Data configuration will be done by Brand staff.
● No creation of accounts possible through Ux.

UC2: Dress Me Up

● No brand staff accounts needed.
● eTryOn staff accounts and permissions will be created manually.
● Data configuration will be done through CLI by eTryOn staff.
● End users (influencers) need a registration Ux for account creation.
● No permissions granting / account approval step needed for end users.

UC3: Magic Mirror

● No brand staff accounts needed.
● eTryOn staff accounts and permissions created manually.
● Data configuration done through CLI by eTryOn staff.
● End users (shoppers) need a registration Ux for account creation.
● No permissions granting / account approval step needed for end users.

7.9.2 Decision
We will implement UI for end users (influencers) to sign up for an account in the Dress Me Up app.

We will implement UI for end users (shoppers) to sign up for an account in the Magic Mirror app.

We will create IAM accounts with appropriate permissions for eTryOn staff to perform administrative
tasks (data configuration for Dress Me Up and Magic Mirror apps, brand user account creation for
VR Designer app).

The applications will be single tenant. We will not implement group membership and management
within an app.

7.9.3 Consequences
Using Firebase Auth and the supported SDKs makes it easy to implement UI components for
sign-up and sign-in, and for the client applications to interact with server-side Firebase components.

Filename: eTryOn_D4.1_final.docx Page 31 of 182

https://etryon.gitlab.io/techdocs/adr/0006-use-an-app-dev-platform/
https://firebase.google.com/
https://firebase.google.com/docs/auth
https://searchcloudcomputing.techtarget.com/definition/single-tenancy

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

We will have to define authorization rules for Cloud Storage and Cloud Firestore to control user
access to resources.

When Cloud Functions are called directly from one of our apps, the auth token will be validated
automatically but we may need to implement authorization checks in the function itself.

It is not clear from the Firebase Auth documentation that we will be able to prevent a malicious user
from accessing Firebase backend services to self-register an account, even when we do not provide
a UI for this. If it is not possible to disable those backend APIs we will have to ensure that accounts
created in this way have no privileges within the system. This is an area requiring more research.

7.10 ADR-0020 Product Recommendations

Date 2021-05-25

Status Accepted

7.10.1 Context
Mallzee is tasked with building a system for delivering product recommendations to the Magic Mirror
and Dress Me Up Applications. Details on how the recommender should work were needing
clarification as product recommendations can be done in multiple ways. This document details the
choices made that the recommender should support for each application.

7.10.2 Decision

7.10.2.1 Magic Mirror
In the magic mirror application the recommender should be trying to select products that are more
suited to the users preferences similar to how Netflix curates content for a user.

To achieve this we will look at the users profile starting with age and gender we will also take into
consideration the following events that happen inside of the app.

● view product
● like product
● buy product

We will also attempt to include seasonality trends into the decision making

7.10.2.2 Dress Me Up
In dress me up the recommender should be trying to select products that fit the users profile again
working with the age and gender. If the user had data from the magic mirror application we can also
attempt to use preference data from the events to enhance the recommendations.

Filename: eTryOn_D4.1_final.docx Page 32 of 182

https://firebase.google.com/docs/functions/callable

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

A nice to have would be to take into consideration the users body shape. The data is not currently
available to perform this recommendation but the team will investigate the feasibility of it once the
core tasks are done.

7.10.2.3 Cold start
Both applications have a problem with cold start recommendations. How do we know what to
recommend without knowing anything about them?

An initial product selection process will be investigated to try and quickly get preference information
on the user to start performing recommendations.

7.10.2.4 Event stream
It was suggested that the Unity analytics stream could be used as the source for in app events that
the recommender will have to lift data from. This system needs more investigation to see if
extracting what we need is simple. The backup plan is to provide an endpoint to send event data to
to capture specifically for recommendations.

7.10.3 Consequences
With the basics in place the system will be able to provide customised recommendations for the
users of each platform. The unknowns are in the body shape data and how that can be used to
enhance the system.

7.11 ADR-0021 Storage Path Scheme

Date 2021-09-21

Status Accepted

Amends ADR-0014 Scanatar Creation

7.11.1 Context
We need to define the storage paths of all use cases in the asset store (Cloud Storage) and
database (Cloud Firestore) so data can be managed and filtered, taking into account the following
concerns:

● GDPR Compliance
● Access Control
● Event Pub/Sub

7.11.1.1 GDPR Compliance

Filename: eTryOn_D4.1_final.docx Page 33 of 182

https://etryon.gitlab.io/techdocs/adr/0014-scanatar-creation/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

We need to be able to identify all user-owned and PII-containing data so we can respond to subject
access requests and right to be forgotten requests.

7.11.1.2 Access Control
Cloud Storage and Firestore use path-based rules for access control. For our use-cases, all data
falls into one of three categories:

● public data: curated by an administrator, can be read by anyone (including unauthenticated
users)

● shared data: curated by an administrator, can be read by any authenticated user
● internal data: curated by an administrator, can be read and updated by any administrator but

is not visible to other users
● user data: this should only be read and written by the owning user

We need to be able to write path-based matching rules to define the desired access controls.

Note: the term “administrator” is used loosely here to mean a user with a role granting them
elevated privileges, e.g. brand staff or marketing executives.

7.11.1.3 Event Pub/Sub
When certain assets and database records are created or updated, we need to be able to trigger a
Cloud Function to run. This is done by configuring events to be published to a Pub/Sub topic, and
subscribing a Cloud Function to the topic. The notifications are bucket-wide, but the subscriber can
specify a filter to control which events they receive from the topic. The filter syntax is quite limited,
allowing only exact or prefix match on the attributes in the event.

7.11.2 Decision
We will store public data under a prefix of /{assetType}/public/

We will store shared data under a prefix of /{assetType}/shared/

We will store internal data under a prefix of /{assetType}/internal/

We will store user data under a prefix of /{assetType}/user/{userID}/

There may be several levels of hierarchy within these prefixes.

7.11.2.1 Examples
● image/public/logo.png
● animation/user/enK0PQ8YY0hXDICJm1MKfjYTTvu1/1FYhdl4F9cWx0qT4EoVf.jpg
● animation/shared/1FYhdl4F9cWx0qT4EoVf.jpg
● texture/user/enK0PQ8YY0hXDICJm1MKfjYTTvu1/garment/1FYhdl4F9cWx0qT4EoVf/base.j

pg

7.11.3 Conclusion

Filename: eTryOn_D4.1_final.docx Page 34 of 182

https://firebase.google.com/docs/rules/rules-language
https://cloud.google.com/pubsub/docs/filtering

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

7.11.3.1 GDPR Compliance
We will be able to comply with GDPR requests as all user-owned data will match a path
/{assetType}/user/{userID}/**.

7.11.3.2 Access Control
We will be able to write access control rules for user-owned files by writing a match rule with a
condition requiring that the user id in the path matches that of the authenticated user. For example:

service firebase.storage {
// Allow the requestor to read or delete any avatar on a path under the
// user directory.
match /avatar/user/{userId}/{anyUserFile=**} {
allow read, delete: if request.auth != null && request.auth.uid == userId;

}
}

For the shared data (admin read/write, user read) we could set up custom claims in Firebase Auth
and use them in the rules:

service firebase.storage {
// Allow authenticated users to read
// Allow users with an `admin` flag set in the user's custom token to write
match /animation/shared/{anySharedFile=**} {
allow read: if request.auth != null;
allow write: if request.auth.token.admin == true;

}
}

7.11.3.3 Event Pub/Sub
7.11.3.4 Subscribers will be able to filter the events they see using a prefix match. For example,

the filter attributes.eventType = "OBJECT_FINALIZE" AND hasPrefix(attributes.objectId,
"/avatar/") would limit the events seen to avatar creation events.

7.11.4 Appendix

7.11.4.1 Storage Access Paths in Use Cases

7.11.4.1.1 Use Case 1

Filename Description Type Folder Path

Filename: eTryOn_D4.1_final.docx Page 35 of 182

https://firebase.google.com/docs/auth/admin/custom-claims

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

nimation-file-{timestamp} Mixamo animation file .fbx animation>shared

animation-preview-{tim
estamp}

An image for preview
purposes

.png or

.jpg
animation>shared

avatar-file-{timestamp} VStitcher file .fbx avatar>shared

avatar-preview-{timesta
mp}

An image for previewing
purposes

.png or

.jpg
avatar>shared

garment-file-{timestam
p}

3D Object file .fbx garment>shared

garment-preview-{time
stamp}

An image for previewing
purposes

.png or

.jpg
garment>shared

textures-{documentID}-
{timestamp}

Zip file including all of
the textures

.zip textures>shared

scanatar-file-{timestam
p}

A temporary 3D Object .ply qcscan>shared

scanatar-meta-{timesta
mp}

A JSON file that features
details about the
Scanatar

.json qcmeta>shared

7.11.4.1.2 Use Case 2

Filename Description Type Folder Path

vatar-file-{timestamp} The avatar that is created for
each user

.fbx avatar>user>{userID}

Filename: eTryOn_D4.1_final.docx Page 36 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

garment-file-{timest
amp}

The garment 3D design file .bw garment>internal

user-media-{timesta
mp}

A photo taken by the user .jpg collection>user>{userI
D}

output-{timestamp} The synthesized image,
output from the platform

.jpg collection>user>{userI
D}

scanatar-file-{timest
amp}

A temporary 3D Object .ply qcscan>user>{userID}

scanatar-meta-{time
stamp}

A JSON file that features
details about the Scanatar

.json qcmeta>user>{userID}

7.11.4.1.3 Use Case 3

Filename Description Type Folder Path

vatar-file-{timestamp} The avatar that is created
for each user

.fbx avatar>user>{userID}

garment-file-{timesta
mp}

The garment 3D object file .fbx garment>shared

textures-{documentID}
-{timestamp}

Zip file including all of the
textures

.zip textures>shared

photo-{documentID}-{t
imestamp}

Photos that are saved by the
user when trying on a
garment using the camera

.jpg photos>user>{userID}

Filename: eTryOn_D4.1_final.docx Page 37 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

scanatar-file-{timesta
mp}

A temporary 3D Object .ply qcscan>user>{userID}

scanatar-meta-{timest
amp}

A JSON file that features
details about the Scanatar

.json qcmeta>user>{userID}

7.11.4.1.4 Term Index

● documentID: Google Firestore Database saves and handles data into Collections. Data
entries written in a collection are assigned a unique id. This ID is used in Firebase Storage to
connect assets to collection items.

● userID: Each registered user has a unique identifier in Firestore Database. This user id is
used in some parts in Firebase Storage path scheme to denote ownership of assets.

● timestamp: The timestamp is expressed in milliseconds since the Unix Epoch.

7.12 ADR-0023 Use Custom Claims

Date 2021-09-22

Status Proposed

7.12.1 Context
In ADR 6 we note that we will use Firebase Authentication in all the user-facing applications. ADR
16 expands on this and describes the authentication requirements for each use-case. The following
table summarizes the roles identified in ADR 16.

Use Case Role Firebase Auth? Registration Ux?

Designer Yes No

1 Product Manager Yes No

1 eTryOn Admin No No

2 Influencer Yes Yes

Filename: eTryOn_D4.1_final.docx Page 38 of 182

https://etryon.gitlab.io/techdocs/adr/0006-use-an-app-dev-platform/
https://firebase.google.com/docs/auth
https://etryon.gitlab.io/techdocs/adr/0016-authentication-and-authorization/
https://etryon.gitlab.io/techdocs/adr/0016-authentication-and-authorization/
https://etryon.gitlab.io/techdocs/adr/0016-authentication-and-authorization/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

2 Marketing Exec No No

3 User Yes Yes

3 3D Tech Designer No No

The roles that don’t use Firebase Auth will instead use standard Google Cloud IAM permissions and
are out of scope of this document.

Use cases 2 and 3 allow users to self-register to use the eTryOn applications and all self-registered
users have the same permissions: these cases require no special treatment.

For use case 1, we will not provide a Ux for users to self-manage their accounts: account creation
will be done by eTryOn staff through the Firebase Admin Auth API . However, a malicious user might
still be able to access the public Firebase APIs for our project and create unauthorized accounts.

7.12.2 Decision
We will use a Custom Claim when we create accounts through the Admin API. This could either be a
role field or an authorized flag. These claims cannot be set by a self-registered user.

7.12.3 Consequences
● We will have to write security rules for the VR Asset Store (Cloud Storage) and VR Data

Store (Firestore) with conditions restricting access to users with the required custom claim
set. See Custom-claim attributes and roles for some examples.

● Cloud functions called from a Firebase app will have to check for the custom claim in the
auth context and reject attempts at unauthorized access.

7.13 ADR-0024 Unity Analytics Events to Server Event Bus

Date 2021-09-29

Status Proposed

7.13.1 Context
For Use Case 3 Magic Mirror app, Google Firebase Analytics is used to track usage behavior and
log a variety of events. These events must be fed to Mallzee’s service in order to generate
user-specific garment suggestions.

Filename: eTryOn_D4.1_final.docx Page 39 of 182

https://firebase.google.com/docs/auth/admin
https://firebase.google.com/docs/auth/admin/custom-claims
https://firebase.google.com/docs/rules/basics#custom-claim_attributes_and_roles

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Analytics Data tracking is implemented through the SDK provided by Google for using Firebase
within Unity applications.

The Firebase SDK offers support for logging two primary types of information:

● Events: log user actions, system events, errors.
● User properties: attributes that describe user base, such as geographical information and

language preference

In the context of the Magic Mirror mobile app, a variety of events will be tracked, such as user clicks
and user engagement time. Moreover, some user properties will be recorded too, such as user
Operating System, OS Version, geographical information, gender, and age.

Firebase Analytics does not offer an API that can be queried to get analytics data and feed them to
Mallzee’s service.

Thus another solution must be found in order to fetch analytics events.

7.13.2 Decision
Google Cloud’s Big Query is a serverless, highly scalable, and cost-effective multicloud data
warehouse, which can be integrated with Firebase Analytics. It features a REST API which can be
called to fetch our Firebase Analytics data.

It requires a BLAZE (paid) Firebase plan.

7.13.3 Consequences
We will be using the integration between Firebase Analytics and Google Cloud Big Query in order to
feed Mallzee’s user-specific garment suggestions function, with the events from the Magic Mirror
app.

8 Appendix B - API specifications from https://etryon.gitlab.io/techdocs/
8.1 Mallzee eTryOn API
openapi: 3.0.0

info:

version: 1.0.0

title: Mallzee eTryOn

servers:

- url: 'https://etryon.mallzee.com'

security:

- ApiKeyAuth: []

paths:

/products/performance:

Filename: eTryOn_D4.1_final.docx Page 40 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

post:

summary: Product performance prediction

description: 'Predicts the performance of a product'

operationId: productPerformance

tags:

- product

requestBody:

description: 'The details of the product and market segements being
targeted to make the product prediction'

required: true

content:

application/json:

schema:

$ref: '#/components/schemas/PerformanceInput'

examples:

productPrediction:

$ref: '#/components/examples/PerformanceInput'

responses:

'200':

description: 'Product performance results'

content:

application/json:

schema:

$ref: '#/components/schemas/PerformanceOutput'

example:

value:

products:

-

id: d33e1e13-3828-4178-926b-a1ca24997136

score: 95

default:

description: Unexpected error

content:

application/json:

schema:

$ref: '#/components/schemas/Error'

example:

value:

Filename: eTryOn_D4.1_final.docx Page 41 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

code: 400

message: 'Invalid product properties'

/products/recommendations:

post:

summary: Product recommendations

description: 'Returns recommended products based on the given product and user
information'

operationId: productRecommendations

tags:

- products

requestBody:

description: 'The details of the product and current user information make
the product recommendations'

required: true

content:

application/json:

schema:

$ref: '#/components/schemas/RecommendationsInput'

examples:

productRecommendation:

$ref: '#/components/examples/RecommendationsInput'

responses:

'200':

description: 'Product recommendation results'

content:

application/json:

schema:

$ref: '#/components/schemas/RecommendationsOutput'

example:

value:

products:

- 288517e2-3f17-4e31-b6e6-1f8d6ca5edf9

- 7eb602dc-975e-4642-91cf-6e069bc9cf03

- 29a7bb26-f826-4e06-86e1-b2fb11d1d317

default:

description: Unexpected error

content:

application/json:

schema:

Filename: eTryOn_D4.1_final.docx Page 42 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

$ref: '#/components/schemas/Error'

example:

value:

code: 400

message: 'Invalid product properties'

components:

securitySchemes:

ApiKeyAuth:

type: apiKey

name: x-api-key

in: header

schemas:

MarketSegment:

type: object

required:

- age_min

- age_max

- price_min

- price_max

properties:

age_min:

type: integer

format: int32

age_max:

type: integer

format: int32

price_min:

type: integer

format: int32

price_max:

type: integer

format: int32

User:

type: object

properties:

age:

type: integer

format: int32

Filename: eTryOn_D4.1_final.docx Page 43 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Product:

type: object

required:

- name

- description

- colour

- image

properties:

name:

type: string

description:

type: string

colour:

type: string

image:

type: string

PerformanceInput:

type: object

properties:

products:

type: array

items:

$ref: '#/components/schemas/Product'

market_segement:

$ref: '#/components/schemas/MarketSegment'

PerformanceOutput:

type: object

properties:

products:

type: array

items:

type: object

properties:

id:

type: string

score:

type: integer

format: int32

Filename: eTryOn_D4.1_final.docx Page 44 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

RecommendationsInput:

type: object

properties:

product:

$ref: '#/components/schemas/Product'

user:

$ref: '#/components/schemas/User'

RecommendationsOutput:

type: object

properties:

products:

type: array

items:

type: string

Error:

type: object

required:

- code

- message

properties:

code:

type: integer

format: int32

message:

type: string

examples:

Product:

value:

id: 'd33e1e13-3828-4178-926b-a1ca24997136'

name: Mini dress

description: A green striped mini dress

colour: green

image:
'https://images.mallzee.com/products/d33e1e13-3828-4178-926b-a1ca24997136'

User:

value:

age: 38

MarketSegment:

Filename: eTryOn_D4.1_final.docx Page 45 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

value:

age_min: 21

age_max: 35

price_min: 30

price_max: 60

PerformanceInput:

value:

products:

-

id: 'd33e1e13-3828-4178-926b-a1ca24997136'

name: Mini dress

description: A green striped mini dress

colour: green

image:
'https://images.mallzee.com/products/d33e1e13-3828-4178-926b-a1ca24997136'

market_segement:

age_min: 21

age_max: 35

price_min: 30

price_max: 60

RecommendationsInput:

value:

products:

-

id: 'd33e1e13-3828-4178-926b-a1ca24997136'

name: Mini dress

description: A green striped mini dress

colour: green

image:
'https://images.mallzee.com/products/d33e1e13-3828-4178-926b-a1ca24997136'

user:

age: 38

8.2 Metail Scanatar Service

In ADR 12 we note that the Metail Scanatar Creation service will be invoked by starting an AWS
Step Function execution.

The StartExecution API endpoint is documented here. The parameters of interest are:

Field Description

Filename: eTryOn_D4.1_final.docx Page 46 of 182

https://etryon.gitlab.io/techdocs/adr/0012-metail-scanatar-creation/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

input JSON input data for the execution

name The name of the execution (a random UUID)

stateMachineArn ARN of the step function - will be known once the endpoint is in place

8.2.1 Input
The step function input JSON (serialized to a string in the input field above) must conform to the
following schema:
{

"$schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "https://etryon-h2020.eu/schema/metail/scanatar-service.json",

"title": "Metail Scanatar Service",

"description": "Step function input for Metail Scanatar creation",

"type": "object",

"properties": {

"inputScan": {

"description": "Presigned GET URL for the Quantacorp scan in Google
Cloud Storage",

"type": "string",

"format": "uri"

},

"outputAvatar": {

"description": "Presigned PUT URL for the output scanatar in Google
Cloud Storage",

"type": "string",

"format": "uri"

},

"gender": {

"description": "Gender of the subject",

"type": "string",

"enum": ["male", "female"]

},

"height": {

"description": "Height of the subject in millimeters",

"type": "integer"

Filename: eTryOn_D4.1_final.docx Page 47 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

},

"avatarCompatibility": {

"description": "Type of avatar to create",

"type": "string",

"enum": ["vstitcher", "metail", "unity"]

}

},

"required": ["inputScan", "outputAvatar", "gender", "height",
"avatarCompatibility"],

"examples": [

{

"inputScan":
"https://storage.googleapis.com/example-bucket/scan/user/enK0PQ8YY0hXDICJm1MKfjYTTvu
1/d072dffc-1aeb-11ec-a8f1-ffa30997c493.obi?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-
Credential=example%40example-project.iam.gserviceaccount.com%2F20181026%2Fus-central
-1%2Fstorage%2Fgoog4_request&X-Goog-Date=20181026T181309Z&X-Goog-Expires=900&X-Goog-
SignedHeaders=host&X-Goog-Signature=247a2aa45f169edf4d187d54e7cc46e4731b1e6273242c4f
4c39a1d2507a0e58706e25e3a85a7dbb891d62afa8496def8e260c1db863d9ace85ff0a184b894b117fe
46d1225c82f2aa19efd52cf21d3e2022b3b868dcc1aca2741951ed5bf3bb25a34f5e9316a2841e8ff4c5
30b22ceaa1c5ce09c7cbb5732631510c20580e61723f5594de3aea497f195456a2ff2bdd0d13bad47289
d8611b6f9cfeef0c46c91a455b94e90a66924f722292d21e24d31dcfb38ce0c0f353ffa5a9756fc2a9f2
b40bc2113206a81e324fc4fd6823a29163fa845c8ae7eca1fcf6e5bb48b3200983c56c5ca81fffb151cc
a7402beddfc4a76b133447032ea7abedc098d2eb14a7",

"outputAvatar":
"https://storage.googleapis.com/example-bucket/avatar/user/enK0PQ8YY0hXDICJm1MKfjYTT
vu1/d072dffc-1aeb-11ec-a8f1-ffa30997c493.fbx?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goo
g-Credential=example%40example-project.iam.gserviceaccount.com%2F20181026%2Fus-centr
al-1%2Fstorage%2Fgoog4_request&X-Goog-Date=20181026T181309Z&X-Goog-Expires=900&X-Goo
g-SignedHeaders=host&X-Goog-Signature=247a2aa45f169edf4d187d54e7cc46e4731b1e6273242c
4f4c39a1d2507a0e58706e25e3a85a7dbb891d62afa8496def8e260c1db863d9ace85ff0a184b894b117
fe46d1225c82f2aa19efd52cf21d3e2022b3b868dcc1aca2741951ed5bf3bb25a34f5e9316a2841e8ff4
c530b22ceaa1c5ce09c7cbb5732631510c20580e61723f5594de3aea497f195456a2ff2bdd0d13bad472
89d8611b6f9cfeef0c46c91a455b94e90a66924f722292d21e24d31dcfb38ce0c0f353ffa5a9756fc2a9
f2b40bc2113206a81e324fc4fd6823a29163fa845c8ae7eca1fcf6e5bb48b3200983c56c5ca81fffb151
cca7402beddfc4a76b133447032ea7abedc098d2eb14a7",

"gender": "female",

"height": 1752

}

]

}

8.2.2 Note on implementation
Developers rarely need to be concerned with the underlying REST API for AWS services - it is much
more common to use one of the AWS SDKs. For example, to invoke the scanatar step function from
a Python program you would use the boto3 step function client and your code would look something
like:

Filename: eTryOn_D4.1_final.docx Page 48 of 182

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/stepfunctions.html

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

import json

import uuid

import boto3

SFN_ARN =
'arn:aws:states:{region}:{accountId}:stateMachine:etryon-scanatar-creation'

INPUT_URL = 'https://storage.googleapis.com/example-bucket/scan/user/...'

OUTPUT_URL = 'https://storage.googleapis.com/example-bucket/avatar/user/...'

client = boto3.client('stepfunctions')

response = client.start_execution(

stateMachineArn=SFN_ARN,

name=str(uuid.uuid4()),

input=json.dumps({

"inputScan": INPUT_URL,

"outputAvatar": OUTPUT_URL,

"gender": "female",

"height": 1752

})

)

print(f'Started execution {response["executionArn"]}')

8.3 QuantaCorp API

8.3.1 Authorization API
openapi: 3.0.0

info:

title: QuantaCorp Authorization API

description: This document contains the specs of the QuantaCorp Authorization API
used at the initial phase of eTryOn iterative testing.

version: 1.28.12

servers:

- url: 'https://api.quantacorp.io/authorization'

externalDocs:

description: Find out more about the QuantaCorp Authorization API and how to use
it.

Filename: eTryOn_D4.1_final.docx Page 49 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

url: 'https://docs.quantacorp.io'

security:

- qc_basic: []

paths:

/oauth2/token:

post:

summary: Create an oauth2 token.

description: Request an oauth2 token by means of a username and password, or
by means of a refresh token.

requestBody:

content:

application/x-www-form-urlencoded:

schema:

oneOf:

- $ref: '#/components/schemas/UsernamePasswordForm'

- $ref: '#/components/schemas/RefreshTokenForm'

description: Form containg authentication data to request oauth2 token.

required: true

responses:

'201':

description: Created.

'401':

description: Unauthorized.

content:

application/json:

schema:

$ref: '#/components/schemas/OAuth2Error'

'500':

description: Internal server error.

components:

securitySchemes:

qc_basic:

type: http

scheme: basic

Filename: eTryOn_D4.1_final.docx Page 50 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

schemas:

OAuth2Error:

type: object

properties:

error:

type: string

enum:

- invalid_client

- invalid_request

- unauthorized_client

- invalid_token

- invalid_grant

error_description:

type: string

RefreshTokenForm:

type: object

properties:

grant_type:

type: string

enum:

- refresh_token

refresh_token:

type: string

UsernamePasswordForm:

type: object

properties:

grant_type:

type: string

enum:

- password

username:

type: string

password:

type: string

format: password

Filename: eTryOn_D4.1_final.docx Page 51 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

TokenDTO:

type: object

properties:

token_type:

type: string

enum:

- Bearer

access_token:

type: string

refresh_token:

type: string

expires_in:

type: integer

format: int32

8.3.2 Public API
openapi: 3.0.0

info:

title: QuantaCorp Public API

description: This document contains the specs of the QuantaCorp Public API used at
the initial phase of eTryOn iterative testing.

version: 1.28.12

servers:

- url: 'https://api.quantacorp.io/public-api'

externalDocs:

description: Find out more about the QuantaCorp Public API and how to use it.

url: 'https://docs.quantacorp.io'

security:

- qc_oauth2: []

paths:

/body:

post:

summary: Add a new body.

Filename: eTryOn_D4.1_final.docx Page 52 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

description: Scans can only be added to specific project and body. In order to
add a scan, a body has to be created first.

requestBody:

content:

application/json:

schema:

$ref: '#/components/schemas/CreateBodyDTO'

description: Body object that needs to be created. Mind that the alias has
to be unique within the company chain.

required: true

responses:

'201':

description: Created.

headers:

Location:

schema:

$ref: '#/components/schemas/Location'

'400':

description: Bad request.

content:

application/json:

schema:

$ref: '#/components/schemas/RestExceptionDTO'

'500':

description: Internal server error.

/scan/project/{projectId}/body/{bodyId}:

post:

summary: Add a new scan.

description: Create a scan for a given project and body.

parameters:

- in: path

name: projectId

schema:

$ref: '#/components/schemas/NumericIdentifier'

required: true

description: Numeric ID of the project for which to add a scan

- in: path

name: bodyId

Filename: eTryOn_D4.1_final.docx Page 53 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

schema:

$ref: '#/components/schemas/NumericIdentifier'

required: true

description: Numeric ID of the body for which to add a scan

requestBody:

content:

multipart/form-data:

schema:

type: object

properties:

metadata:

$ref: '#/components/schemas/ScanMetadataDTO'

front:

type: string

format: binary

side:

type: string

format: binary

encoding:

metadata:

contentType: application/json

front:

contentType: image/png

side:

contentType: image/png

description: Body object that needs to be created. Mind that the alias has
to be unique within the company chain.

required: true

responses:

'202':

description: Accepted. All scan data is uploaded. The scan is being
processed and is expected to finish in the amount of seconds indicated by the
X-Processing-Time header.

headers:

Location:

schema:

$ref: '#/components/schemas/Location'

X-Processing-Time:

schema:

Filename: eTryOn_D4.1_final.docx Page 54 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

$ref: '#/components/schemas/X-Processing-Time'

'400':

description: Bad request.

content:

application/json:

schema:

$ref: '#/components/schemas/RestExceptionDTO'

'500':

description: Internal server error.

/scan/{scanId}/callbacks:

post:

summary: Add callbacks to a scan.

description: Create callbacks for a given scan. Handling callbacks is the last
step in the processing of a scan. Make sure to send the callbacks-request timely.

parameters:

- in: path

name: scanId

schema:

$ref: '#/components/schemas/NumericIdentifier'

required: true

description: Numeric ID of the scan for which to add callbacks

requestBody:

content:

application/x-www-form-urlencoded:

schema:

$ref: '#/components/schemas/ScanCallbacksForm'

description: Object containing all callbacks for a scan.

required: true

responses:

'200':

description: OK.

'400':

description: Bad request.

content:

application/json:

schema:

$ref: '#/components/schemas/RestExceptionDTO'

Filename: eTryOn_D4.1_final.docx Page 55 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

'500':

description: Internal server error.

components:

securitySchemes:

qc_oauth2:

type: oauth2

flows:

password:

tokenUrl: 'https://api.quantacorp.io/authorization/oauth2/token'

refreshUrl: 'https://api.quantacorp.io/authorization/oauth2/token'

scopes: {}

schemas:

Location:

type: string

pattern: '^[a-z]+/[0-9]+$'

description: Location header consists of the name of the resource followed by
a forward slash and the numeric identifier (int64).

example:

body:

value: body/1234

summary: The location header for a body with ID 1234.

scan:

value: scan/5678

summary: The location header for a scan with ID 5678.

X-Processing-Time:

type: integer

format: int32

description: The amount of time in seconds the client should wait before
fetching scan result.

NumericIdentifier:

type: integer

format: int64

RestExceptionDTO:

type: object

Filename: eTryOn_D4.1_final.docx Page 56 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

properties:

errorReason:

type: string

errorCode:

type: integer

format: int64

externalMessage:

type: string

CreateBodyDTO:

type: object

properties:

company_id:

type: integer

format: int64

link_to_project:

type: integer

format: int64

alias:

type: string

height:

type: integer

format: int32

gender:

type: string

enum:

- FEMALE

- MALE

- UNKNOWN

weight:

type: integer

format: int32

required:

- company_id

- link_to_project

- alias

- height

- gender

Filename: eTryOn_D4.1_final.docx Page 57 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

ScanMetadataDTO:

type: object

properties:

front:

$ref: '#/components/schemas/PictureMetadataDTO'

side:

$ref: '#/components/schemas/PictureMetadataDTO'

PictureMetadataDTO:

type: object

properties:

gender:

type: string

enum:

- F

- M

- U

height:

type: integer

format: int32

accelerometerX:

type: number

format: double

accelerometerY:

type: number

format: double

accelerometerZ:

type: number

format: double

weight:

type: integer

format: int32

fov_deg:

type: number

format: double

required:

- gender

Filename: eTryOn_D4.1_final.docx Page 58 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

- height

- accelerometerX

- accelerometerY

- accelerometerZ

ScanCallbacksForm:

type: object

properties:

ply_scape_callback:

type: string

etryon_meta_callback:

type: string

8.4 UC2 DressMeUp Metail Composition Service

The Metail Composition service will be invoked by starting an AWS Step Function execution.

The StartExecution API endpoint is documented here. The parameters of interest are:

Field Description

input JSON input data for the execution

name The name of the execution (a random UUID)

stateMachineArn ARN of the step function - will be known once the endpoint is in place

8.4.1 Input
The step function input JSON (serialized to a string in the input field above) must conform to the
following schema:
{

"$schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "https://etryon-h2020.eu/schema/metail/uc2-composition-service.json",

"title": "Metail Composition Service",

"description": "Step function input for composing 3D garments into 2D user
photos",

"type": "object",

"properties": {

"userAvatar": {

Filename: eTryOn_D4.1_final.docx Page 59 of 182

https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"description": "Presigned GET URL for the Metail avatar in Google Cloud
Storage",

"type": "string",

"format": "uri"

},

"userPhoto": {

"description": "Presigned GET URL for the photo of the user that the
garment will be composed into, in Google Cloud Storage",

"type": "string",

"format": "uri"

},

"garment": {

"description": "Presigned GET URL for the browzwear file containing the
garment to be composed, in Google Cloud Storage",

"type": "string",

"format": "uri"

},

"outputImage": {

"description": "Presigned PUT URL for the output image in Google Cloud
Storage",

"type": "string",

"format": "uri"

}

},

"required": ["userAvatar", "userPhoto", "garment", "outputImage"],

"examples": [

{

"userAvatar": "https://storage.googleapis.com/see-adr-0021",

"userPhoto": "https://storage.googleapis.com/see-adr-0021",

"garment": "https://storage.googleapis.com/see-adr-0021",

"outputImage": "https://storage.googleapis.com/see-adr-0021"

}

]

}

8.4.2 Note on implementation
Developers rarely need to be concerned with the underlying REST API for AWS services - it is much
more common to use one of the AWS SDKs. For example, to invoke the scanatar step function from

Filename: eTryOn_D4.1_final.docx Page 60 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

a Python program you would use the boto3 step function client and your code would look something
like:
import json

import uuid

import boto3

SFN_ARN =
'arn:aws:states:{region}:{accountId}:stateMachine:etryon-dress-me-up-composition'

client = boto3.client('stepfunctions')

response = client.start_execution(

stateMachineArn=SFN_ARN,

name=str(uuid.uuid4()),

input=json.dumps({

"userAvatar": "https://storage.googleapis.com/...",

"userPhoto": "https://storage.googleapis.com/...",

"garment": "https://storage.googleapis.com/...",

"outputImage": "https://storage.googleapis.com/..."

})

)

print(f'Started execution {response["executionArn"]}')

8.4.3 Operation
See the sequence diagram for more details. A high level view of the operation of this service is as
follows: -

1. Download inputs

2. Estimates user pose in photo.

3. Finds closest reference avatar to user.

4. Loads garment bw file

5. Applies pose to the dressed reference avatar

6. Composition-raytrace render of garment solution

7. Compose raytrace render into original photo to create Result image

8.5 UC3 Garment Model Creation Service

The Metail Garment Model Creation service generates an OBI garment from an input Browzwear
file. It will be invoked by starting an AWS Step Function execution.

The StartExecution API endpoint is documented here. The parameters of interest are:

Filename: eTryOn_D4.1_final.docx Page 61 of 182

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/stepfunctions.html
https://etryon.gitlab.io/techdocs/arch-diags/use-case-2/#dynamic-diagrams
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Field Description

input JSON input data for the execution

name The name of the execution (a random UUID)

stateMachineArn ARN of the step function - will be known once the endpoint is in place

8.5.1 Input
The step function input JSON (serialized to a string in the input field above) must conform to the
following schema:
{

"$schema": "https://json-schema.org/draft/2020-12/schema",

"$id":
"https://etryon-h2020.eu/schema/metail/uc3-garment-model-creation-service.json",

"title": "Metail Garment Model Creation Service",

"description": "Step function input for creating garment models",

"type": "object",

"properties": {

"browzwearGarment": {

"description": "Presigned GET URL for Browzwear file in Google Cloud
Storage",

"type": "string",

"format": "uri"

},

"obiGarment": {

"description": "Presigned PUT URL for the output OBI garment in Google
Cloud Storage",

"type": "string",

"format": "uri"

}

},

"required": ["browzwearGarment", "obiGarment"],

"examples": [

{

"browzwearGarment": "https://storage.googleapis.com/see-adr-0021",

Filename: eTryOn_D4.1_final.docx Page 62 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"obiGarment": "https://storage.googleapis.com/see-adr-0021"

}

]

}

Filename: eTryOn_D4.1_final.docx Page 63 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

9 Appendix C - Architecture overview diagrams from https://etryon.gitlab.io/techdocs/
This legend describes the colour coding and shape keys used in the architecture diagrams.

Filename: eTryOn_D4.1_final.docx Page 64 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

9.1 VR Designer System (https://etryon.gitlab.io/techdocs/arch-diags/use-case-1/)

Filename: eTryOn_D4.1_final.docx Page 65 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

9.2 DressMeUp System (https://etryon.gitlab.io/techdocs/arch-diags/use-case-2/)

Filename: eTryOn_D4.1_final.docx Page 66 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

9.3 Magic Mirror System (https://etryon.gitlab.io/techdocs/arch-diags/use-case-3/)

Filename: eTryOn_D4.1_final.docx Page 67 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

10 Appendix D - Cloud Function specifications from
https://etryon.gitlab.io/techdocs/
10.1 Avatar Creation

10.1.1 Context
An avatar creation cloud function is required for all three use-cases. It is the interface
between the eTryOn systems and the Metail Scanatar Service.

10.1.2 Use Case 1

Filename: eTryOn_D4.1_final.docx Page 68 of 182

https://etryon.gitlab.io/techdocs/apis/metail/scanatar-service/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

10.1.3 Use Case 2

10.1.4 Use Case 3

10.1.5 Invocation
The function is triggered by a Cloud Storage notification when a Quantacorp scan (PLY) and
metadata (JSON) has been written to the asset store.

10.1.6 Input
A Google Cloud Storage Notification

Filename: eTryOn_D4.1_final.docx Page 69 of 182

https://cloud.google.com/storage/docs/pubsub-notifications#format

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

10.1.7 Actions
1. Read metadata from asset store and extract subject height and gender
2. Construct presigned GET URL for scan
3. Construct presigned PUT URL for the output avatar
4. Retrieve AWS keys from secret store
5. Invoke the Avatar Creation Step Function

10.1.8 Output
This function is invoked asynchronously so produces no output. The generated avatar is
written to the asset store using the presigned URL passed to the step function invocation.

10.2 Catalogue Update

10.2.1 Context
This function is required for Use Cases 2 & 3. It is automatically triggered once a day, to
parse information from the Odlo web feed and updates the garment database in the Dress
Me Up Data Store.

10.2.2 Invocation
The cloud function runs once per day, reads the updated CSV file and makes the necessary
changes in the Google Firestore Database of the project.

10.2.3 Input
The input is a CSV file at a provided URL location.

10.2.4 Actions
1. The service triggers a function once a day that retrieves and parses the CSV file from

the link.
2. It then uploads new entries and refreshes the status of the garments in the Firebase

Datastore.

10.2.5 Output
● Success / Error code.
● Results are written to garments Data Store collection.

10.2.6 Repository
https://gitlab.com/etryon/shared/gcf-catalogue-updater

10.3 Consumer Ratings

10.3.1 Context

Filename: eTryOn_D4.1_final.docx Page 70 of 182

https://etryon.gitlab.io/techdocs/apis/metail/scanatar-service/
https://gitlab.com/etryon/shared/gcf-catalogue-updater

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

This function is required for Use Case 2. It is triggered by the DressMeUp app when a user
creates a collection item, handling the call to the Consumer Rating Prediction Service, by
providing the necessary information and then writing back the results to the Dress Me Up
Data Store.

10.3.2 Invocation
The function is triggered by a Cloud Storage notification when a collection item entry has
been written to the data store.

10.3.3 Input
The input is a JSON payload with the following field.

Field Description

Array An array of garment IDs

10.3.4 Actions
1. The service creates an array of garment ids based on a user’s active collection.
2. The service sends the array to the Prediction Service and gets back a list of garment

ids for a specific user.
3. The returned data is saved into the Dress Me Up Data Store.

10.3.5 Output
● Success / Error code.
● An object that features a user id and an array of garment ids.
● Results are written to garment_suggestions Data Store collection.
● Example return object:

{

"user_id": "435",

"garment_ids": [

"43223432",

"53246342342",

"43635745234"

]

}

10.3.6 Repository
https://gitlab.com/etryon/use-case-2/gcf-consumer-ratings

Filename: eTryOn_D4.1_final.docx Page 71 of 182

https://gitlab.com/etryon/use-case-2/gcf-consumer-ratings

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

10.4 DressMeUp Composition Invoker

10.4.1 Context
This function is required for use case 2. It is invoked by the DressMeUp mobile app when a user
tries on a garment, and is the interface between eTryOn systems and the Metail Composition
Service.

10.4.2 Invocation
This function is invoked by the DressMeUp mobile app when a user selects a photo and garment for
composition.

10.4.3 Input
The input is a JSON payload with the following fields.

Field Description

Photo Reference to a user submitted photo in the DressMeUp Asset Store

Garment Reference to a garment in the DressMeUp Asset Store

10.4.4 Input Function JSON Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"description": "The root schema comprises the entire JSON document.",

"examples": [

{

"src": {

"garment_id": "7611366000042",

"user_media":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.jpg"

}

}

],

"required": [

"src"

],

"title": "The root schema",

"type": "object",

Filename: eTryOn_D4.1_final.docx Page 72 of 182

https://etryon.gitlab.io/techdocs/apis/metail/uc2-composition-service/
https://etryon.gitlab.io/techdocs/apis/metail/uc2-composition-service/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"properties": {

"src": {

"$id": "#/properties/src",

"default": {},

"description": "The source object features a garment unique id (EAN code) and
the url to Firebast Storage where a user submitted media item resides.",

"examples": [

{

"garment_id": "7611366000042",

"user_media":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.jpg"

}

],

"required": [

"garment_id",

"user_media"

],

"title": "The src object",

"type": "object",

"properties": {

"garment_id": {

"$id": "#/properties/src/properties/garment_id",

"default": "",

"description": "ODLO unique garment id (EAN code)",

"examples": [

"7611366000042"

],

"title": "The garment_id property",

"type": "string"

},

"user_media": {

"$id": "#/properties/src/properties/user_media",

"default": "",

"description": "A url that points to Google Firebase Storage, where a
media item submitted by the user is stored",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.jpg"

Filename: eTryOn_D4.1_final.docx Page 73 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

],

"title": "The user_media property",

"type": "string"

}

}

}

}

}

10.4.5 Actions
1. Retrieve the user id of the caller from the authentication context

2. Locate the user’s avatar in the DressMeUp Asset Store

3. Construct a presigned GET URL for the avatar

4. Construct a presigned GET URL for the photo

5. Construct a presigned GET URL for the garment browzwear file

6. Construct a presigned PUT URL for the output image

7. Invoke the Metail Composition Service step function.

10.4.6 Output
On success, returns null. On error throws a functions.https.HttpsError which will be returned to the
client.

10.4.7 Implementation notes
This function should be implemented as an HTTPS callable function and called by the client using
the Firebase SDK. This ensures that authentication tokens are automatically included in the request
and validated by the server. The request body is also automatically deserialized.

The composition service currently involves some manual processing and is not guaranteed to return
a result within 12 hours. This means the signed URL cannot be generated using the IAM signBlob
method, as these URLs are only valid for a maximum of 12 hours.

10.5 Rating Retrieval

10.5.1 Context
This function is required for Use Case 1. It is triggered by the VR Designer config app when a user
uploads a new garment or updates an existing one. It handles the call to the Consumer Rating
Prediction Service, by providing the necessary information and then writing back the results to the
VR Designer Data Store.

10.5.2 Invocation
The function is triggered by a Cloud Storage notification when a garment item has been written or
updated in the data store.

Filename: eTryOn_D4.1_final.docx Page 74 of 182

https://etryon.gitlab.io/techdocs/apis/metail/uc2-composition-service/
https://firebase.google.com/docs/functions/callable
https://cloud.google.com/iam/credentials/reference/rest/v1/projects.serviceAccounts/signBlob
https://cloud.google.com/iam/credentials/reference/rest/v1/projects.serviceAccounts/signBlob

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

10.5.3 Input
The input is a JSON payload with the following fields.

Field Description

Photo A downscaled garment photo in base64 encoding. The size
must be of size 256 x 256

Metadata Garment metadata

Market Segmentation
Array

An array that features the current market segmentation
properties like age_target, color, and price

10.5.4 Actions
1. The function sends a JSON payload that features a downscaled photos of a garment, the

garment metadata, and an array with market segment details to the Consumer Rating
Prediction Service.

2. It receives a result in the form of a percentage string.

3. The function then writes to the VR Data Store, an entry that features the garment ID, the
market segment ID, and the performance score.

10.5.5 Output
● Success / Error code.

● An object that features a garment id, a segment id and a percentage result.

● Results are written to market_segments_results Data Store collection.

● Example return object:
{

"garment_id": "98237483247",

"segment_id": "1236",

"result": "95"

}

10.5.6 Repository
https://gitlab.com/etryon/uc1/gcf-rating-retrieval

10.6 UC3 Unity Model Creation

Filename: eTryOn_D4.1_final.docx Page 75 of 182

https://gitlab.com/etryon/uc1/gcf-rating-retrieval

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

An avatar creation cloud function is required for use case 3. It is the interface between the eTryOn
systems and the Metail Garment Model Creation Service.

10.6.1 Invocation
The function is triggered by a Cloud Storage notification when a Browzwear file has been written to
the asset store.

10.6.2 Input
A Google Cloud Storage Notification

10.6.3 Actions
1. Construct presigned GET URL for Browzwear file

2. Construct presigned PUT URL for the output OBI garment model

3. Retrieve AWS keys from secret store

4. Invoke the Garment Model Creation Step Function

10.6.4 Output
This function is invoked asynchronously so produces no output. The generated OBI garment is
written to the asset store using the presigned URL passed to the step function invocation.

11 Appendix E - Firestore Database JSON Schemas from
https://etryon.gitlab.io/techdocs/
11.1 Firestore Database JSON Schemas

In the following folders are the schemas for each use case data store.

Some useful information:

● Note that UC2 and UC3 share the same ‘garments’ db.

12.1.1 JSON Schema versioning

We use Semantic Versioning to safeguard backwards-compatibility between the new
schema and existing data represented in earlier versions of the schema.

The filename follows the following pattern MODEL-REVISION-ADDITION, where you increment:

MODEL when you make a breaking schema change which will prevent interaction with any
historical data,

REVISION when you make a schema change which may prevent interaction with some
historical data,

ADDITION when you make a schema change that is compatible with all historical data.

11.2 UC1 Schemas

Filename: eTryOn_D4.1_final.docx Page 76 of 182

https://etryon.gitlab.io/techdocs/apis/metail/uc3-garment-model-creation/
https://cloud.google.com/storage/docs/pubsub-notifications#format
https://etryon.gitlab.io/techdocs/apis/metail/uc3-garment-model-creation/

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

11.2.1 Animations Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc1/animations.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"name": "Runnning",

"created": "1624521140042",

"created_by": "egm9430mfg3403",

"src": [

{

"file":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/animation%pu
blic%filename.abc",

"photo":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/animation%pu
blic%filename.png"

}

]

}

],

"required": [

"name",

"created",

"created_by",

"src"

],

"properties": {

"name": {

"$id": "#/properties/name",

"default": "",

"description": "The animation name",

"examples": [

"Runnning",

"Standing",

Filename: eTryOn_D4.1_final.docx Page 77 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"Sitting",

"Walking"

],

"title": "The name property",

"type": "string"

},

"created": {

"$id": "#/properties/created",

"default": "",

"description": "Timestamp in milliseconds, created when submitting an
animation",

"examples": [

"1624521140042",

"1519129853500"

],

"title": "The created property",

"type": "string"

},

"created_by": {

"$id": "#/properties/created_by",

"type": "string",

"title": "The created_by object",

"description": "It includes a user Id of the user that uploaded the
animation",

"default": {},

"examples": [

"egm9430mfg3403"

]

},

"src": {

"$id": "#/properties/src",

"default": {},

"description": "The src object contains a file and a photo property",

"examples": [

{

"file":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/animation%pu
blic%filename.fbx",

Filename: eTryOn_D4.1_final.docx Page 78 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"photo":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/animation%pu
blic%filename.png"

}

],

"required": [

"file",

"photo"

],

"title": "The src object",

"type": "object",

"properties": {

"file": {

"$id": "#/properties/src/properties/file",

"default": "",

"description": "This is a URL that points to the animation file
saved in Firebase Storage",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/animation%pu
blic%filename.fbx"

],

"title": "The file property",

"type": "string"

},

"photo": {

"$id": "#/properties/src/properties/photo",

"default": "",

"description": "A URL that points to a photo of the animation
saved in Firebase Storage, for display purposes on the config app",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/animation%pu
blic%filename.png"

],

"title": "The photo property",

"type": "string"

}

}

}

}

Filename: eTryOn_D4.1_final.docx Page 79 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

}

11.2.2 Avatars Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc1/avatars.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"name": "Male 30s Caucasian",

"created": "1624521140042",

"created_by": "egm9430mfg3403",

"src": {

"file":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/avatar%publi
c%filename.fbx",

"photo":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/avatar%publi
c%filename.jpg"

}

}

],

"required": [

"name",

"created",

"created_by",

"src"

],

"properties": {

"name": {

"$id": "#/properties/name",

"default": "",

"description": "The Avatar name",

"examples": [

"Male 30s Caucasian"

],

"title": "The name property",

Filename: eTryOn_D4.1_final.docx Page 80 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"type": "string"

},

"created": {

"$id": "#/properties/created",

"default": "",

"description": "Timestamp in milliseconds, created when submitting an
avatar",

"examples": [

"1624521140042"

],

"title": "The created property",

"type": "string"

},

"created_by": {

"$id": "#/properties/created_by",

"default": {},

"description": "It includes a user Id of the user that uploaded the
avatar",

"examples": [

"egm9430mfg3403"

],

"type": "string"

},

"src": {

"$id": "#/properties/src",

"default": {},

"description": "The src object contains a file and a photo property.",

"examples": [

{

"file":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/avatar%publi
c%filename.fbx",

"photo":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/avatar%publi
c%filename.png"

}

],

"required": [

"file",

"photo"

Filename: eTryOn_D4.1_final.docx Page 81 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

],

"title": "The src object",

"type": "object",

"properties": {

"file": {

"$id": "#/properties/src/properties/file",

"default": "",

"description": "This is a URL that points to the avatar file
saved in Firebase Storage",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/avatar%publi
c%filename.fbx"

],

"title": "The file property",

"type": "string"

},

"photo": {

"$id": "#/properties/src/properties/photo",

"default": "",

"description": "A URL that points to a photo of the avatar saved
in Firebase Storage, for display purposes on the config app",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/avatar%publi
c%filename.png"

],

"title": "The photo property",

"type": "string"

}

}

}

}

}

11.2.3 Garments Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc1/garments.json",

"type": "object",

Filename: eTryOn_D4.1_final.docx Page 82 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"uid": "98237483247",

"name": "Pencil Skirt",

"collection": [

"F/W2020",

"SPRING2021"

],

"photo":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.png",

"category": "Bottoms",

"type": "Skirt",

"style": "Pencil",

"src": {

"file":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.fbx",

"texture":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/textures%sha
red%filename.zip",

"meta": {

"colors": [

"Light Grey",

"Black",

"Red"

]

}

},

"market_segment_ids": [

"3",

"46",

"54"

],

"created": "1624521140042",

"created_by": "egm9430mfg3403"

}

Filename: eTryOn_D4.1_final.docx Page 83 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

],

"required": [

"uid",

"name",

"collection",

"photo",

"category",

"type",

"style",

"src",

"market_segment_ids",

"created",

"created_by"

],

"properties": {

"uid": {

"$id": "#/properties/uid",

"default": "",

"description": "A unique id for each garment configuration",

"examples": [

"98237483247"

],

"title": "The uid property",

"type": "string"

},

"name": {

"$id": "#/properties/name",

"default": "",

"description": "The garment name",

"examples": [

"Pencil Skirt"

],

"title": "The name property",

"type": "string"

},

"collection": {

"$id": "#/properties/collection",

"default": [],

Filename: eTryOn_D4.1_final.docx Page 84 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"description": "An array of strings, denoting one or multiple fashion
collections that the garment is included in.",

"examples": [

[

"F/W2020",

"SPRING2021"

]

],

"title": "The collection array",

"type": "array",

"items": {

"$id": "#/properties/collection/items",

"anyOf": [

{

"$id": "#/properties/collection/items/anyOf/0",

"default": "",

"description": "A string, denoting a fashion collection that
the garment is included in.",

"examples": [

"F/W2020",

"SPRING2021"

],

"title": "The first anyOf property",

"type": "string"

}

]

}

},

"photo": {

"$id": "#/properties/photo",

"default": "",

"description": "A URL of a photo of the specific garment that is saved
in Firebase Storage, under the UC1 subfolder",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.png"

],

"title": "The photo property",

"type": "string"

Filename: eTryOn_D4.1_final.docx Page 85 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

},

"category": {

"$id": "#/properties/category",

"default": "",

"description": "The category the garment belongs to",

"examples": [

"Bottoms"

],

"title": "The category property",

"type": "string"

},

"type": {

"$id": "#/properties/type",

"default": "",

"description": "The type of garment",

"examples": [

"Skirt"

],

"title": "The type property",

"type": "string"

},

"style": {

"$id": "#/properties/style",

"default": "",

"description": "The garment style",

"examples": [

"Pencil"

],

"title": "The style property",

"type": "string"

},

"src": {

"$id": "#/properties/src",

"type": "object",

"title": "The src schema",

"description": "Inside the src object, there is a specific garment file,
a texture zip and available colors. It includes a URL to Firebase Storage for the
garment file, a URL for the textures zip in Firebase Storage and an array that
features all colors available",

Filename: eTryOn_D4.1_final.docx Page 86 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"default": {},

"examples": [

{

"file":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.fbx",

"texture":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/textures%sha
red%filename.zip",

"meta": {

"colors": [

"Light Grey",

"Black",

"Red"

]

}

}

],

"required": [

"file",

"texture",

"meta"

],

"properties": {

"file": {

"$id": "#/properties/src/properties/file",

"type": "string",

"title": "The file property",

"description": "A Firebase Storage url that features the 3d
model of the garment",

"default": "",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.fbx"

]

},

"texture": {

"$id": "#/properties/src/properties/texture",

"type": "string",

Filename: eTryOn_D4.1_final.docx Page 87 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"title": "The texture property",

"description": "A Firebase Storage url that features the zip
file for the textures of the garment",

"default": "",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/textures%sha
red%filename.zip"

]

},

"meta": {

"$id": "#/properties/src/properties/meta",

"type": "object",

"title": "The meta object",

"description": "The meta object contains metadata about the
garment",

"default": {},

"examples": [

{

"colors": [

"Light Grey",

"Black",

"Red"

]

}

],

"required": [

"colors"

],

"properties": {

"colors": {

"$id":
"#/properties/src/properties/meta/properties/colors",

"type": "array",

"title": "The colors array",

"description": "An array that features the colors
available for the garment",

"default": [],

"examples": [

[

Filename: eTryOn_D4.1_final.docx Page 88 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"Light Grey",

"Black"

]

],

"items": {

"$id":
"#/properties/src/properties/meta/properties/colors/items",

"anyOf": [

{

"$id":
"#/properties/src/properties/meta/properties/colors/items/anyOf/0",

"type": "string",

"title": "The first anyOf property",

"description": "A color label string",

"default": "",

"examples": [

"Light Grey",

"Black"

]

}

]

}

}

}

}

}

},

"market_segment_ids": {

"$id": "#/properties/market_segment_ids",

"default": [],

"description": "It contains market segment Ids that the garment is
associated with",

"examples": [

[

"3",

"46"

]

],

"title": "The market_segment_ids array",

Filename: eTryOn_D4.1_final.docx Page 89 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"type": "array",

"additionalItems": false,

"items": {

"$id": "#/properties/market_segment_ids/items",

"anyOf": [

{

"$id": "#/properties/market_segment_ids/items/anyOf/0",

"default": "",

"description": "A market segment id string",

"examples": [

"3",

"46"

],

"title": "The first anyOf property",

"type": "string"

}

]

}

},

"created": {

"$id": "#/properties/created",

"default": "",

"description": "Timestamp in milliseconds, created when submitting a
garment entry",

"examples": [

"1624521140042"

],

"title": "The created property",

"type": "string"

},

"created_by": {

"$id": "#/properties/created_by",

"type": "string",

"title": "The created_by property",

"description": "An Id of the user that uploaded the specific garment",

"default": {},

"examples": ["egm9430mfg3403"]

}

Filename: eTryOn_D4.1_final.docx Page 90 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

}

}

11.2.4 Market Segments Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc1/market_segments.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"name": "Segment 1",

"created": "1624521140042",

"age_target": "18-24",

"price": "200",

"color": "white"

}

],

"required": [

"name",

"created",

"age_target",

"price",

"color"

],

"properties": {

"name": {

"$id": "#/properties/name",

"default": "",

"description": "The Market Segment name.",

"examples": [

"Segment 1"

],

"title": "The name poperty",

"type": "string"

},

Filename: eTryOn_D4.1_final.docx Page 91 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"created": {

"$id": "#/properties/created",

"default": "",

"description": "Timestamp in milliseconds, created when submitting a
market segment entry",

"examples": [

"1624521140042"

],

"title": "The created property",

"type": "string"

},

"age_target": {

"$id": "#/properties/age_target",

"default": "",

"description": "The age target property",

"examples": [

"18-24"

],

"title": "The age_target property",

"type": "string"

},

"price": {

"$id": "#/properties/price",

"default": "",

"description": "The price property",

"examples": [

"200"

],

"title": "The price property",

"type": "string"

},

"color": {

"$id": "#/properties/color",

"default": "",

"description": "The color property",

"examples": [

"white"

],

Filename: eTryOn_D4.1_final.docx Page 92 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"title": "The color property",

"type": "string"

}

}

}

11.2.5 Market Segments Results Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc1/market_segments.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"name": "Segment 1",

"created": "1624521140042",

"age_target": "18-24",

"price": "200",

"color": "white"

}

],

"required": [

"name",

"created",

"age_target",

"price",

"color"

],

"properties": {

"name": {

"$id": "#/properties/name",

"default": "",

"description": "The Market Segment name.",

"examples": [

"Segment 1"

],

Filename: eTryOn_D4.1_final.docx Page 93 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"title": "The name poperty",

"type": "string"

},

"created": {

"$id": "#/properties/created",

"default": "",

"description": "Timestamp in milliseconds, created when submitting a
market segment entry",

"examples": [

"1624521140042"

],

"title": "The created property",

"type": "string"

},

"age_target": {

"$id": "#/properties/age_target",

"default": "",

"description": "The age target property",

"examples": [

"18-24"

],

"title": "The age_target property",

"type": "string"

},

"price": {

"$id": "#/properties/price",

"default": "",

"description": "The price property",

"examples": [

"200"

],

"title": "The price property",

"type": "string"

},

"color": {

"$id": "#/properties/color",

"default": "",

"description": "The color property",

Filename: eTryOn_D4.1_final.docx Page 94 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"examples": [

"white"

],

"title": "The color property",

"type": "string"

}

}

}

11.2.6 User Info Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc1/user_info.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"name": "John Doe",

"role": "designer",

"default_segment": "1236"

}

],

"required": [

"name",

"role",

"default_segment"

],

"properties": {

"name": {

"$id": "#/properties/name",

"default": "",

"description": "The provided Full name of the user",

"examples": [

"John Doe"

],

"title": "The name property",

Filename: eTryOn_D4.1_final.docx Page 95 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"type": "string"

},

"role": {

"$id": "#/properties/role",

"default": "",

"description": "The user role",

"examples": [

"user",

"designer",

"manager"

],

"title": "The role property",

"type": "string"

},

"default_segment": {

"$id": "#/properties/default_segment",

"default": "",

"description": "If user sets a preferred Market Segment, then it is set
here as an Id. When creating a new garment entry, this default Segment will be
pre-set",

"examples": [

"1236"

],

"title": "The default_segment property",

"type": "string"

}

}

}

11.3 UC2 Schemas

11.3.1 Collection Items Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc2/collection_items.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

Filename: eTryOn_D4.1_final.docx Page 96 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

{

"name": "My cool outfit",

"created": "1519211809934",

"status": "pending",

"src": {

"garment_id": "7611366000042",

"user_media":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.jpg"

},

"output":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/output%user%
enK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.jpg",

"type": "photo"

}

],

"required": [

"name",

"created",

"status",

"src",

"output",

"type"

],

"properties": {

"name": {

"$id": "#/properties/name",

"default": "",

"description": "A user generated title for the collection item",

"examples": [

"My cool outfit"

],

"title": "The name property",

"type": "string"

},

"created": {

"$id": "#/properties/created",

Filename: eTryOn_D4.1_final.docx Page 97 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"default": "",

"description": "Timestamp in milliseconds, created when submitting a
collection item",

"examples": [

"1519211809934"

],

"title": "The created property",

"type": "string"

},

"status": {

"$id": "#/properties/status",

"default": "pending",

"description": "The status of a collection item. Default is 'pending'.
Changes to 'ready' when output file is submitted.",

"examples": [

"pending",

"ready"

],

"title": "The status property",

"type": "string"

},

"src": {

"$id": "#/properties/src",

"default": {},

"description": "The source object features a garment unique id (EAN
code) and the url to Firebast Storage where a user submitted media item resides.",

"examples": [

{

"garment_id": "7611366000042",

"user_media":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.jpg"

}

],

"required": [

"garment_id",

"user_media"

],

"title": "The src object",

"type": "object",

Filename: eTryOn_D4.1_final.docx Page 98 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"properties": {

"garment_id": {

"$id": "#/properties/src/properties/garment_id",

"default": "",

"description": "ODLO unique garment id (EAN code)",

"examples": [

"7611366000042"

],

"title": "The garment_id property",

"type": "string"

},

"user_media": {

"$id": "#/properties/src/properties/user_media",

"default": "",

"description": "A url that points to Google Firebase Storage,
where a media item submitted by the user is stored",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.jpg"

],

"title": "The user_media property",

"type": "string"

}

}

},

"output": {

"$id": "#/properties/output",

"default": "",

"description": "A url that points to Google Firebase Storage, where the
resulting image or video created by the service is stored.",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/output%user%
enK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.jpg"

],

"title": "The output property",

"type": "string"

},

"type": {

Filename: eTryOn_D4.1_final.docx Page 99 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"$id": "#/properties/type",

"default": "photo",

"description": "The type of a collection item. Can either be photo or
video",

"examples": [

"photo",

"video"

],

"title": "The type property",

"type": "string"

}

}

}

11.3.2 Garment Suggestions Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc2/garment_suggestions.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"user_id": "435",

"garment_ids": [

"43223432",

"53246342342",

"43635745234"

]

}

],

"required": [

"user_id",

"garment_ids"

],

"properties": {

"user_id": {

"$id": "#/properties/user_id",

Filename: eTryOn_D4.1_final.docx Page 100 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"default": "",

"description": "The user Id",

"examples": [

"435"

],

"title": "The user_id property",

"type": "string"

},

"garment_ids": {

"$id": "#/properties/garment_ids",

"default": [],

"description": "An array that features ids for the garment suggestions
of each user.",

"examples": [

[

"43223432",

"53246342342"

]

],

"title": "The garment_ids array",

"type": "array",

"additionalItems": false,

"items": {

"$id": "#/properties/garment_ids/items",

"anyOf": [

{

"$id": "#/properties/garment_ids/items/anyOf/0",

"default": "",

"description": "A garment id",

"examples": [

"43223432",

"53246342342"

],

"title": "The first anyOf property",

"type": "string"

}

]

}

Filename: eTryOn_D4.1_final.docx Page 101 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

}

}

}

11.3.3 Garments Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc2/garments.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"title": "REVOLUTION LIGHT langärmeliges Baselayer Shirt",

"eshop_link": "https://www.odlo.com/7611366000042.html",

"uid": "7611366000042",

"group_id": "391772",

"material": "100% Polyester",

"product_type": {

"full_type": "Men>Sporting Activity>Running & Trail",

"extracted_type_0": "Men",

"extracted_type_1": "Sporting Activity",

"extracted_type_2": "Running & Trail"

},

"price": "64.95",

"additional_information": {

"custom_label_0": "",

"custom_label_1": "Warm",

"custom_label_2": "",

"custom_label_3": "oekotex"

},

"gender": "male",

"size": "M",

"color": "directoire blue",

"photo":
"https://click.cptrack.de/?rd=true&k=rXK5MERxr0OxIUPXDyoj7-2y22xETFU22pNdMFGuQXDUbYj
HA_BLt09OLT8cF4k6v9egB14mTsTo9GB4eBPQwQ~~&rdlink=https%3A%2F%2Fwww.odlo.com%2Fon%2Fd
emandware.static%2F-%2FSites-odlo-master-catalog%2Fdefault%2Fdw3895ef55%2Fimages%2Fl
arge%2F211874.jpg",

Filename: eTryOn_D4.1_final.docx Page 102 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"src": {

"file":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.bw"

}

}

],

"required": [

"title",

"eshop_link",

"uid",

"group_id",

"material",

"product_type",

"price",

"additional_information",

"gender",

"size",

"color",

"photo",

"src"

],

"properties": {

"title": {

"$id": "#/properties/title",

"default": "",

"description": "The garment entry title",

"examples": [

"REVOLUTION LIGHT langärmeliges Baselayer Shirt"

],

"title": "The title property",

"type": "string"

},

"eshop_link": {

"$id": "#/properties/eshop_link",

"default": "",

"description": "A URL that links to the specific garment in the ODLO
e-shop",

"examples": [

Filename: eTryOn_D4.1_final.docx Page 103 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"https://www.odlo.com/7611366000042.html"

],

"title": "The eshop_link property",

"type": "string"

},

"uid": {

"$id": "#/properties/uid",

"default": "",

"description": "Each garment has a unique ID (EAN code)",

"examples": [

"7611366000042"

],

"title": "The uid property",

"type": "string"

},

"group_id": {

"$id": "#/properties/group_id",

"default": "",

"description": "Each garment irregardless of size and color, has a
unique id which is the group id property.",

"examples": [

"391772"

],

"title": "The group_id property",

"type": "string"

},

"material": {

"$id": "#/properties/material",

"default": "",

"description": "The garment material",

"examples": [

"100% Polyester"

],

"title": "The material property",

"type": "string"

},

"product_type": {

"$id": "#/properties/product_type",

Filename: eTryOn_D4.1_final.docx Page 104 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"default": {},

"description": "This is provided by ODLO as a full type. We further
break it down into 3 distinct types, for advanced filtering.",

"examples": [

{

"full_type": "Men>Sporting Activity>Running & Trail",

"extracted_type_0": "Men",

"extracted_type_1": "Sporting Activity",

"extracted_type_2": "Running & Trail"

}

],

"required": [

"full_type",

"extracted_type_0",

"extracted_type_1",

"extracted_type_2"

],

"title": "The product_type object",

"type": "object",

"properties": {

"full_type": {

"$id": "#/properties/product_type/properties/full_type",

"default": "",

"description": "the full type property of a garment. It is a
long string consisted of some tags",

"examples": [

"Men>Sporting Activity>Running & Trail"

],

"title": "The full_type property",

"type": "string"

},

"extracted_type_0": {

"$id": "#/properties/product_type/properties/extracted_type_0",

"default": "",

"description": "The first type term extracted from full type
string",

"examples": [

"Men"

],

Filename: eTryOn_D4.1_final.docx Page 105 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"title": "The extracted_type_0 property",

"type": "string"

},

"extracted_type_1": {

"$id": "#/properties/product_type/properties/extracted_type_1",

"default": "",

"description": "The seconds type term extracted from full type
string",

"examples": [

"Sporting Activity"

],

"title": "The extracted_type_1 property",

"type": "string"

},

"extracted_type_2": {

"$id": "#/properties/product_type/properties/extracted_type_2",

"default": "",

"description": "The third type term extracted from full type
string",

"examples": [

"Running & Trail"

],

"title": "The extracted_type_2 property",

"type": "string"

}

}

},

"price": {

"$id": "#/properties/price",

"default": "",

"description": "The garment price",

"examples": [

"64.95"

],

"title": "The price property",

"type": "string"

},

"additional_information": {

"$id": "#/properties/additional_information",

Filename: eTryOn_D4.1_final.docx Page 106 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"default": {},

"description": "This object consists of four different fields that
contain information that further describe the garment",

"examples": [

{

"custom_label_0": "",

"custom_label_1": "Warm",

"custom_label_2": "",

"custom_label_3": "oekotex"

}

],

"required": [

"custom_label_0",

"custom_label_1",

"custom_label_2",

"custom_label_3"

],

"title": "The additional_information object",

"type": "object",

"properties": {

"custom_label_0": {

"$id":
"#/properties/additional_information/properties/custom_label_0",

"default": "",

"description": "The first field that further describes the
garment item",

"examples": [

""

],

"title": "The custom_label_0 property",

"type": "string"

},

"custom_label_1": {

"$id":
"#/properties/additional_information/properties/custom_label_1",

"default": "",

"description": "The second field that further describes the
garment item",

"examples": [

"Warm"

Filename: eTryOn_D4.1_final.docx Page 107 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

],

"title": "The custom_label_1 property",

"type": "string"

},

"custom_label_2": {

"$id":
"#/properties/additional_information/properties/custom_label_2",

"default": "",

"description": "The third field that further describes the
garment item",

"examples": [

""

],

"title": "The custom_label_2 property",

"type": "string"

},

"custom_label_3": {

"$id":
"#/properties/additional_information/properties/custom_label_3",

"default": "",

"description": "The fourth field that further describes the
garment item",

"examples": [

"oekotex"

],

"title": "The custom_label_3 property",

"type": "string"

}

}

},

"gender": {

"$id": "#/properties/gender",

"default": "",

"description": "This is male or female, for the fit to tailor male or
female bodies",

"examples": [

"male",

"female"

],

"title": "The gender property",

Filename: eTryOn_D4.1_final.docx Page 108 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"type": "string"

},

"size": {

"$id": "#/properties/size",

"default": "",

"description": "The garment size property 'Small' to 'XXL'",

"examples": [

"S",

"M",

"L",

"XL",

"XXL"

],

"title": "The size property",

"type": "string"

},

"color": {

"$id": "#/properties/color",

"default": "",

"description": "The garment color",

"examples": [

"directoire blue"

],

"title": "The color property",

"type": "string"

},

"photo": {

"$id": "#/properties/photo",

"default": "",

"description": "A URL of the garment photo. The photo is hosted on ODLO
server",

"examples": [

"https://click.cptrack.de/?rd=true&k=rXK5MERxr0OxIUPXDyoj7-2y22xETFU22pNdMFGuQXDUbYj
HA_BLt09OLT8cF4k6v9egB14mTsTo9GB4eBPQwQ~~&rdlink=https%3A%2F%2Fwww.odlo.com%2Fon%2Fd
emandware.static%2F-%2FSites-odlo-master-catalog%2Fdefault%2Fdw3895ef55%2Fimages%2Fl
arge%2F211874.jpg"

],

"title": "The photo property",

"type": "string"

Filename: eTryOn_D4.1_final.docx Page 109 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

},

"src": {

"$id": "#/properties/src",

"default": {},

"description": "This object contains the Browzwear file along with other
files that might be needed in the future",

"examples": [

{

"file":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.bw"

}

],

"required": [

"file"

],

"title": "The src object",

"type": "object",

"properties": {

"file": {

"$id": "#/properties/src/properties/file",

"default": "",

"description": "A URL pointing to the file that is saved in
Firebase Storage",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.bw"

],

"title": "The file property",

"type": "string"

}

}

}

}

}

11.3.4 User Info Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

Filename: eTryOn_D4.1_final.docx Page 110 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"$id": "https://etryon-h2020.eu/schema/uc2/user_info.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"gender": "male",

"size": "L",

"avatar":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/avatar%user%
enK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.fbx"

}

],

"required": [

"gender",

"size",

"avatar"

],

"properties": {

"gender": {

"$id": "#/properties/gender",

"default": "",

"description": "User set gender, to be used on filtering garments",

"examples": [

"male",

"female"

],

"title": "The gender property",

"type": "string"

},

"size": {

"$id": "#/properties/size",

"default": "",

"description": "User size, to be used when selecting a garment",

"examples": [

"S",

"M",

"L",

Filename: eTryOn_D4.1_final.docx Page 111 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"XL",

"XXL"

],

"title": "The size property",

"type": "string"

},

"avatar": {

"$id": "#/properties/avatar",

"default": "",

"description": "User avatar file in the form of a URL, from QC API, it
is saved in Firebase Storage",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/avatar%user%
enK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.fbx"

],

"title": "The avatar property",

"type": "string"

}

}

}

11.4 UC3 Schemas

11.4.1 Garments Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc3/garments.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"title": "REVOLUTION LIGHT langärmeliges Baselayer Shirt",

"eshop_link": "https://www.odlo.com/7611366000042.html",

"uid": "7611366000042",

"group_id": "391772",

"material": "100% Polyester",

"product_type": {

Filename: eTryOn_D4.1_final.docx Page 112 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"full_type": "Men>Sporting Activity>Running & Trail",

"extracted_type_0": "Men",

"extracted_type_1": "Sporting Activity",

"extracted_type_2": "Running & Trail"

},

"price": "64.95",

"additional_information": {

"custom_label_0": "",

"custom_label_1": "Warm",

"custom_label_2": "",

"custom_label_3": "oekotex"

},

"gender": "male",

"size": "M",

"color": "directoire blue",

"photo":
"https://click.cptrack.de/?rd=true&k=rXK5MERxr0OxIUPXDyoj7-2y22xETFU22pNdMFGuQXDUbYj
HA_BLt09OLT8cF4k6v9egB14mTsTo9GB4eBPQwQ~~&rdlink=https%3A%2F%2Fwww.odlo.com%2Fon%2Fd
emandware.static%2F-%2FSites-odlo-master-catalog%2Fdefault%2Fdw3895ef55%2Fimages%2Fl
arge%2F211874.jpg",

"src": {

"file":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.fbx",

"texture":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/textures%sha
red%filename.zip",

"meta": {

"colors": [

"Light Grey",

"Black",

"Red"

]

}

}

}

],

"required": [

"title",

"eshop_link",

"uid",

Filename: eTryOn_D4.1_final.docx Page 113 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"group_id",

"material",

"product_type",

"price",

"additional_information",

"gender",

"size",

"color",

"photo",

"src"

],

"properties": {

"title": {

"$id": "#/properties/title",

"default": "",

"description": "The garment entry title",

"examples": [

"REVOLUTION LIGHT langärmeliges Baselayer Shirt"

],

"title": "The title property",

"type": "string"

},

"eshop_link": {

"$id": "#/properties/eshop_link",

"default": "",

"description": "A URL that links to the specific garment in the ODLO
e-shop",

"examples": [

"https://www.odlo.com/7611366000042.html"

],

"title": "The eshop_link property",

"type": "string"

},

"uid": {

"$id": "#/properties/uid",

"default": "",

"description": "Each garment has a unique ID (EAN code)",

"examples": [

Filename: eTryOn_D4.1_final.docx Page 114 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"7611366000042"

],

"title": "The uid property",

"type": "string"

},

"group_id": {

"$id": "#/properties/group_id",

"default": "",

"description": "Each garment irregardless of size and color, has a
unique id which is the group id property.",

"examples": [

"391772"

],

"title": "The group_id property",

"type": "string"

},

"material": {

"$id": "#/properties/material",

"default": "",

"description": "The garment material",

"examples": [

"100% Polyester"

],

"title": "The material property",

"type": "string"

},

"product_type": {

"$id": "#/properties/product_type",

"default": {},

"description": "This is provided by ODLO as a full type. We further
break it down into 3 distinct types, for advanced filtering.",

"examples": [

{

"full_type": "Men>Sporting Activity>Running & Trail",

"extracted_type_0": "Men",

"extracted_type_1": "Sporting Activity",

"extracted_type_2": "Running & Trail"

}

],

Filename: eTryOn_D4.1_final.docx Page 115 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"required": [

"full_type",

"extracted_type_0",

"extracted_type_1",

"extracted_type_2"

],

"title": "The product_type object",

"type": "object",

"properties": {

"full_type": {

"$id": "#/properties/product_type/properties/full_type",

"default": "",

"description": "the full type property of a garment. It is a
long string consisted of some tags",

"examples": [

"Men>Sporting Activity>Running & Trail"

],

"title": "The full_type property",

"type": "string"

},

"extracted_type_0": {

"$id": "#/properties/product_type/properties/extracted_type_0",

"default": "",

"description": "The first type term extracted from full type
string",

"examples": [

"Men"

],

"title": "The extracted_type_0 property",

"type": "string"

},

"extracted_type_1": {

"$id": "#/properties/product_type/properties/extracted_type_1",

"default": "",

"description": "The seconds type term extracted from full type
string",

"examples": [

"Sporting Activity"

],

Filename: eTryOn_D4.1_final.docx Page 116 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"title": "The extracted_type_1 property",

"type": "string"

},

"extracted_type_2": {

"$id": "#/properties/product_type/properties/extracted_type_2",

"default": "",

"description": "The third type term extracted from full type
string",

"examples": [

"Running & Trail"

],

"title": "The extracted_type_2 property",

"type": "string"

}

}

},

"price": {

"$id": "#/properties/price",

"default": "",

"description": "The garment price",

"examples": [

"64.95"

],

"title": "The price property",

"type": "string"

},

"additional_information": {

"$id": "#/properties/additional_information",

"default": {},

"description": "This object consists of four different fields that
contain information that further describe the garment",

"examples": [

{

"custom_label_0": "",

"custom_label_1": "Warm",

"custom_label_2": "",

"custom_label_3": "oekotex"

}

],

Filename: eTryOn_D4.1_final.docx Page 117 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"required": [

"custom_label_0",

"custom_label_1",

"custom_label_2",

"custom_label_3"

],

"title": "The additional_information object",

"type": "object",

"properties": {

"custom_label_0": {

"$id":
"#/properties/additional_information/properties/custom_label_0",

"default": "",

"description": "The first field that further describes the
garment item",

"examples": [

""

],

"title": "The custom_label_0 property",

"type": "string"

},

"custom_label_1": {

"$id":
"#/properties/additional_information/properties/custom_label_1",

"default": "",

"description": "The second field that further describes the
garment item",

"examples": [

"Warm"

],

"title": "The custom_label_1 property",

"type": "string"

},

"custom_label_2": {

"$id":
"#/properties/additional_information/properties/custom_label_2",

"default": "",

"description": "The third field that further describes the
garment item",

"examples": [

Filename: eTryOn_D4.1_final.docx Page 118 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

""

],

"title": "The custom_label_2 property",

"type": "string"

},

"custom_label_3": {

"$id":
"#/properties/additional_information/properties/custom_label_3",

"default": "",

"description": "The fourth field that further describes the
garment item",

"examples": [

"oekotex"

],

"title": "The custom_label_3 property",

"type": "string"

}

}

},

"gender": {

"$id": "#/properties/gender",

"default": "",

"description": "This is male or female, for the fit to tailor male or
female bodies",

"examples": [

"male",

"female"

],

"title": "The gender property",

"type": "string"

},

"size": {

"$id": "#/properties/size",

"default": "",

"description": "The garment size property 'Small' to 'XXL'",

"examples": [

"S",

"M",

"L",

Filename: eTryOn_D4.1_final.docx Page 119 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"XL",

"XXL"

],

"title": "The size property",

"type": "string"

},

"color": {

"$id": "#/properties/color",

"default": "",

"description": "The garment color",

"examples": [

"directoire blue"

],

"title": "The color property",

"type": "string"

},

"photo": {

"$id": "#/properties/photo",

"default": "",

"description": "A URL of the garment photo. The photo is hosted on ODLO
server",

"examples": [

"https://click.cptrack.de/?rd=true&k=rXK5MERxr0OxIUPXDyoj7-2y22xETFU22pNdMFGuQXDUbYj
HA_BLt09OLT8cF4k6v9egB14mTsTo9GB4eBPQwQ~~&rdlink=https%3A%2F%2Fwww.odlo.com%2Fon%2Fd
emandware.static%2F-%2FSites-odlo-master-catalog%2Fdefault%2Fdw3895ef55%2Fimages%2Fl
arge%2F211874.jpg"

],

"title": "The photo property",

"type": "string"

},

"src": {

"$id": "#/properties/src",

"type": "object",

"title": "The src schema",

"description": "Inside the src object, there is a specific garment file,
a texture zip and available colors. It includes a URL to Firebase Storage for the
garment file, a URL for the textures zip in Firebase Storage and an array that
features all colors available",

"default": {},

"examples": [

Filename: eTryOn_D4.1_final.docx Page 120 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

{

"file":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.fbx",

"texture":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/textures%sha
red%filename.zip",

"meta": {

"colors": [

"Light Grey",

"Black",

"Red"

]

}

}

],

"required": [

"file",

"texture",

"meta"

],

"properties": {

"file": {

"$id": "#/properties/src/properties/file",

"type": "string",

"title": "The file property",

"description": "A Firebase Storage url that features the 3d
model of the garment",

"default": "",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/garment%shar
ed%filename.fbx"

]

},

"texture": {

"$id": "#/properties/src/properties/texture",

"type": "string",

"title": "The texture property",

"description": "A Firebase Storage url that features the zip
file for the textures of the garment",

Filename: eTryOn_D4.1_final.docx Page 121 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"default": "",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/textures%sha
red%filename.zip"

]

},

"meta": {

"$id": "#/properties/src/properties/meta",

"type": "object",

"title": "The meta object",

"description": "The meta object contains metadata about the
garment",

"default": {},

"examples": [

{

"colors": [

"Light Grey",

"Black",

"Red"

]

}

],

"required": [

"colors"

],

"properties": {

"colors": {

"$id":
"#/properties/src/properties/meta/properties/colors",

"type": "array",

"title": "The colors array",

"description": "An array that features the colors
available for the garment",

"default": [],

"examples": [

[

"Light Grey",

"Black"

]

Filename: eTryOn_D4.1_final.docx Page 122 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

],

"items": {

"$id":
"#/properties/src/properties/meta/properties/colors/items",

"anyOf": [

{

"$id":
"#/properties/src/properties/meta/properties/colors/items/anyOf/0",

"type": "string",

"title": "The first anyOf property",

"description": "A color label string",

"default": "",

"examples": [

"Light Grey",

"Black"

]

}

]

}

}

}

}

}

}

}

}

11.4.2 User Info Schema
{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "https://etryon-h2020.eu/schema/uc3/user_info.json",

"type": "object",

"title": "The root schema",

"description": "The root schema comprises the entire JSON document.",

"default": {},

"examples": [

{

"birth_date": "16/07/1985",

"height": "183",

Filename: eTryOn_D4.1_final.docx Page 123 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"weight": "72",

"units": "metric",

"show_recommendations": false,

"garment_recommendations": [

"234435234",

"234435234",

"234435234"

],

"gender": "male",

"garment_size": "L",

"saved_garments": {

"garment_id": "234435234",

"photos": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename1.png",

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename2.png",

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename3.png"

]

},

"avatar":
"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/avatar%user%
enK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.fbx"

}

],

"required": [

"birth_date",

"height",

"weight",

"units",

"show_recommendations",

"garment_recommendations",

"gender",

"garment_size",

"saved_garments",

"avatar"

],

Filename: eTryOn_D4.1_final.docx Page 124 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"properties": {

"birth_date": {

"$id": "#/properties/birth_date",

"default": "",

"description": "The user birth date in dd/mm/yyyy format",

"examples": [

"16/07/1985"

],

"title": "The birth_date property",

"type": "string"

},

"height": {

"$id": "#/properties/height",

"default": "",

"description": "User height in centimeters",

"examples": [

"183"

],

"title": "The height property",

"type": "string"

},

"weight": {

"$id": "#/properties/weight",

"default": "",

"description": "User weight in kilos",

"examples": [

"72"

],

"title": "The weight property",

"type": "string"

},

"units": {

"$id": "#/properties/units",

"default": "",

"description": "Unit system (metric / imperial)",

"examples": [

"metric",

"imperial"

Filename: eTryOn_D4.1_final.docx Page 125 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

],

"title": "The units property",

"type": "string"

},

"show_recommendations": {

"$id": "#/properties/show_recommendations",

"default": false,

"description": "If true, recommended garments are shown to the user",

"examples": [

true,

false

],

"title": "The show_recommendations property",

"type": "boolean"

},

"garment_recommendations": {

"$id": "#/properties/garment_recommendations",

"default": [],

"description": "An array that contains recommended garment ids",

"examples": [

[

"234435234",

"234435234"

]

],

"title": "The garment_recommendations array",

"type": "array",

"additionalItems": false,

"items": {

"$id": "#/properties/garment_recommendations/items",

"anyOf": [

{

"$id": "#/properties/garment_recommendations/items/anyOf/0",

"default": "",

"description": "A garment id",

"examples": [

"234435234"

],

Filename: eTryOn_D4.1_final.docx Page 126 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"title": "The first anyOf property",

"type": "string"

}

]

}

},

"gender": {

"$id": "#/properties/gender",

"default": "",

"description": "User gender",

"examples": [

"male",

"female"

],

"title": "The gender schema",

"type": "string"

},

"garment_size": {

"$id": "#/properties/garment_size",

"default": "",

"description": "User preference on garment size",

"examples": [

"S",

"M",

"L",

"XL",

"XXL"

],

"title": "The garment_size property",

"type": "string"

},

"saved_garments": {

"$id": "#/properties/saved_garments",

"default": {},

"description": "An array that consists of saved garment objects",

"examples": [

{

"garment_id": "234435234",

Filename: eTryOn_D4.1_final.docx Page 127 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"photos": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename1.png",

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename2.png",

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename3.png"

]

}

],

"required": [

"garment_id",

"photos"

],

"title": "The saved_garments array",

"type": "object",

"properties": {

"garment_id": {

"$id": "#/properties/saved_garments/properties/garment_id",

"default": "",

"description": "The garment id (EAN code)",

"examples": [

"234435234"

],

"title": "The garment_id property",

"type": "string"

},

"photos": {

"$id": "#/properties/saved_garments/properties/photos",

"default": [],

"description": "An array that features photos taken by the user
while trying on a garment",

"examples": [

[

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename1.png",

Filename: eTryOn_D4.1_final.docx Page 128 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename2.png",

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename3.png"

]

],

"title": "The photos array",

"type": "array",

"additionalItems": false,

"items": {

"$id":
"#/properties/saved_garments/properties/photos/items",

"anyOf": [

{

"$id":
"#/properties/saved_garments/properties/photos/items/anyOf/0",

"default": "",

"description": "A URL that points to a photo in
Firebase Storage",

"examples": [

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/photo%user%e
nK0PQ8YY0hXDICJm1MKfjYTTvu1%filename1.png"

],

"title": "The first anyOf property",

"type": "string"

}

]

}

}

}

},

"avatar": {

"$id": "#/properties/avatar",

"default": "",

"description": "A URL for the user avatar that resides in Firebase
Storage",

"examples": [

Filename: eTryOn_D4.1_final.docx Page 129 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

"https://firebasestorage.googleapis.com/v0/b/etryon-h2020.appspot.com/o/avatar%user%
enK0PQ8YY0hXDICJm1MKfjYTTvu1%filename.fbx"

],

"title": "The avatar property",

"type": "string"

}

}

}

12 Appendix F - Usage Scenarios from https://etryon.gitlab.io/techdocs/
12.1 UC1 - VR Designer App

12.1.1 Sign up / Sign in screen

Filename: eTryOn_D4.1_final.docx Page 130 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

12.1.2 VR Designer app mockup

12.1.3 Usage Scenario 0.0
Use Case id: 1.0.0

Primary Actor: Designer

Description

The user must sign up or sign in to use the app.

Pre-Conditions:

None.

Task Sequence:

In order to use the app, the user must Sign Up providing a Full Name, e-mail and password.

Alternatively the user can Sign In using the credentials of an existing account.

12.1.4 Usage Scenario 1.0: Garment Interaction
Use Case id: 1.1.0

Primary Actor: Designer

Filename: eTryOn_D4.1_final.docx Page 131 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Description

The user can shift through the garments offered inside the VR environment, preview them
and select them in order to fit them on the mannequin that is located in the center of the
environment.

Pre-Conditions:

1. The garments have been loaded successfully on the rack that features them.

Task Sequence:

While inside the VR environment, the user can browse through all the different
garments/clothes available, that are presented to him on a rack.

If there are too many clothes for the rack to show, there are two buttons that the user can
push, situated in the left and right of the rack, in order for the rack to shift to another batch
of clothes.

The garment rack can be further filtered down by category using the two arrows on top. The
category name is shown as a text label.

By having the user selector hover over a rack item, the cloth/garment is ‘expanded’ and a
preview is shown in full.

By selecting this garment, it is fitted on the mannequin that is located in the center of the
room.

12.1.5 Usage Scenario 2.0: Mannequin Selection
Use Case id: 1.2.0

Primary Actor: Designer

Description

The user can select a mannequin available inside the VR environment and replace the
active current one.

Pre-Conditions:

1. The mannequin shelf has successfully loaded all available mannequins.

Task Sequence:

In the center of the room, resides the active mannequin. In order to change it the user can:

● Tap on the arrows in the bottom of the model to cycle through them, or
● In the left of the model is a shelf, featuring all mannequins available for overview. By

selecting one, the model in the center of the room is updated.

Filename: eTryOn_D4.1_final.docx Page 132 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

12.1.6 Usage Scenario 3.0: Animation selection - playback
Use Case id: 1.3.0

Primary Actor: Designer

Description

The user can shift through default character animations and play or pause them.

Pre-Conditions:

1. None.

Task Sequence:

While inside the VR environment, the user can shift through available animations by clicking
on the arrows that are located on top of the active mannequin, and watch the animations
with the selected model and fitted garment.

By selecting the play/pause icon, the user can play or pause the selected animation
sequence.

12.1.7 Usage Scenario 4.0: Export a creation
Use Case id: 1.4.0

Primary Actor: Designer

Description

The user can export a creation.

Pre-Conditions:

None.

Task Sequence:

When the user is done inspecting the active mannequin and is finished with setting up
garment(s), animation and pose (mannequin selection), the resulting creation can be
exported into a serialized binary and subsequently shared with a product manager.

12.2 UC1 - VR Designer Backoffice App

Filename: eTryOn_D4.1_final.docx Page 133 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Sign Up View

Sign In View

Filename: eTryOn_D4.1_final.docx Page 134 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Garments View

Add New Garment View

Filename: eTryOn_D4.1_final.docx Page 135 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Avatars View

Add New Avatar View

Filename: eTryOn_D4.1_final.docx Page 136 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Animations View

Add New Animation View

Filename: eTryOn_D4.1_final.docx Page 137 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

12.2.1 Usage Scenario 1.0
Use Case id: 4.1.0

Primary Actor: Designer

Description

The user must sign up or sign in to use the app.

Pre-Conditions:

None.

Task Sequence:

In order to upload Garments, Animations or Avatars, the user must first login so that the
files uploaded have a creator.

The user can Sign Up providing a Full Name, e-mail and password.

Alternatively the user can Sign In using the credentials of an existing account.

12.2.2 Usage Scenario 2.0: Garments View Interactions
Use Case id: 4.2.0

Primary Actor: Designer

Description

The user can see all the uploaded garments and perform various actions in the Garments
View.

Pre-Conditions:

None.

Task Sequence:

After successfully logging in, the user is shown a Dashboard featuring three columns. The
first column features the navigation of the Dashboard, so the user can easily switch
between the different types of items. There is also a Sign Out button. The second column
features a list of the uploaded garment items. The user can perform the following actions:

● Search for a garment item by name, using the search icon in the top right of the
column.

● View all available garments in the form of a list.
● Delete a garment item.
● Add a new garment item by clicking on the FAB button floating in the bottom right.

Filename: eTryOn_D4.1_final.docx Page 138 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

● Select a garment item by clicking on it, where the third column is populated with
editable garment item details.

By clicking on a garment item in the list, the third column of the Dashboard is populated
with the editable details of the garment item. More specifically the user can:

● Change the Title of the garment item.
● Add or remove a Garment. Three things must be selected, an FBX file a zip

containing the textures and a json file with the texture metadata.
● Add or remove a garment photo.
● Specify Categories.
● Specify the Collection(s) a Garment is part of.
● Add / Remove Market Segmentation data.

After all edits have been made, the user can click on the UPDATE button to update the
garment item with the new information.

12.2.3 Usage Scenario 2.1: Add New Garment Item
Use Case id: 4.2.1

Primary Actor: Designer

Description

The user can upload a new garment item.

Pre-Conditions:

1. 4.2.0

Task Sequence:

While being on the Garments View the user can click on the FAB in the bottom right of the
Garment List in order to launch the Add New Garment view.

In this view the user has to input the following information in order to add a new garment
item to the system:

● Garment Name (Title).
● Select a Collection(s).
● Add a Garment. Three things must be selected, an FBX file a zip containing the

textures and a json file with the texture metadata.
● Add a Garment photo.
● Select Categories.
● Specify Market Segmentation entries.

Filename: eTryOn_D4.1_final.docx Page 139 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

12.2.4 Usage Scenario 3.0: Avatars View Interactions
Use Case id: 4.3.0

Primary Actor: Designer

Description

The user can see all the uploaded avatars and perform various actions in the Avatars View.

Pre-Conditions:

None.

Task Sequence:

This view features a list of the uploaded avatars. The user can perform the following
actions:

● Search for an avatar by name, using the search icon in the top right of the column.
● View all available avatars in the form of a list.
● Delete an avatar.
● Add a new avatar by clicking on the FAB button floating in the bottom right.
● Select an avatar by clicking on it, where the third column is populated with editable

avatar details.

By clicking on an avatar item in the list, the third column of the Dashboard is populated with
its editable details. More specifically the user can:

● Change the avatar title.
● Add or remove the FBX file of the avatar.

The user can click on the SAVE button to update the avatar.

12.2.5 Usage Scenario 3.1: Add New Avatar
Use Case id: 4.3.1

Primary Actor: Designer

Description

The user can upload a new avatar.

Pre-Conditions:

1. 4.3.0

Task Sequence:

Filename: eTryOn_D4.1_final.docx Page 140 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

While being on the Avatars View the user can click on the FAB in the bottom right of the
Avatars List in order to launch the Add New Avatar view.

In this view the user has to input the following information in order to add a new avatar to
the system:

● Avatar Name (Title).
● FBX File

12.2.6 Usage Scenario 4.0: Animations View Interactions
Use Case id: 4.4.0

Primary Actor: Designer

Description

The user can see all the uploaded animations and perform various actions in the
Animations View.

Pre-Conditions:

None.

Task Sequence:

This view features a list of the uploaded animations. The user can perform the following
actions:

● Search for an animation by name, using the search icon in the top right of the
column.

● View all available animations in the form of a list.
● Delete an animation.
● Add a new animaton by clicking on the FAB button floating in the bottom right.
● Select an animation by clicking on it, where the third column is populated with

editable animation details.

By clicking on an animation item in the list, the third column of the Dashboard is populated
with its editable details. More specifically the user can:

● Change the animation title.
● Add or remove the FBX file of the animation.

The user can click on the SAVE button to update the animation.

12.2.7 Usage Scenario 4.1: Add New Animation
Use Case id: 4.4.1

Filename: eTryOn_D4.1_final.docx Page 141 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Primary Actor: Designer

Description

The user can upload a new animation.

Pre-Conditions:

1. 4.4.0

Task Sequence:

While being on the Animations View the user can click on the FAB in the bottom right of the
Animations List in order to launch the Add New Animation view.

In this view the user has to input the following information in order to add a new animation
to the system:

● Animation Name (Title).
● FBX File

12.2.8 Usage Scenario 5.0: Manage Market Segmentation
Use Case id: 4.5.0

Primary Actor: Designer

Description

The user can create, delete and set a default Market Segmentation.

Pre-Conditions:

None.

Task Sequence:

● While being on the Market Segmentation View the user can see a list of the available
Market Segmentation entries. By clicking on the star icon, a Market Segment can be
set as default. By clicking on the trash bin icon the entry can be deleted.

● To create a new entry, the user can click on the FAB in the bottom right, and a new
entry will appear in the list.

● When a Market Segment is selected, its details are populated in the third column.
There the user can change the Market Segment properties and save the entry.

12.3 UC2 - Dress Me Up App

Filename: eTryOn_D4.1_final.docx Page 142 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Sign In Screen

Filename: eTryOn_D4.1_final.docx Page 143 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Sign Up Screen

Filename: eTryOn_D4.1_final.docx Page 144 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Add New Collection Item 1

Filename: eTryOn_D4.1_final.docx Page 145 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Add New Collection Item 2

Filename: eTryOn_D4.1_final.docx Page 146 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Add New Collection Item 3

Filename: eTryOn_D4.1_final.docx Page 147 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Collection - Pending View

Filename: eTryOn_D4.1_final.docx Page 148 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Collection - Ready View

Filename: eTryOn_D4.1_final.docx Page 149 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Collection Item Viewer

Filename: eTryOn_D4.1_final.docx Page 150 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Account View

12.3.1 Usage Scenario 1.0: Sign up - Sign in
Use Case id: 2.1.0

Primary Actor: End user (Consumer)

Description

The user must sign up or sign in to use the app.

Pre-Conditions:

Filename: eTryOn_D4.1_final.docx Page 151 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

None.

Task Sequence:

The user opens the app and its greeted with a sign up / sign in screen. Providing a
combination of an e-mail and password, the user can sign up for an account, or sign in
using an existing account. When signing up, the user must also scan their body.

12.3.2 Usage Scenario 2.0: Create a new collection item
Use Case id: 2.2.0

Primary Actor: Marketing exec (Brand)

Description

The user can create a new collection item to upload to the platform.

Pre-Conditions:

The product being added to the app is already available for sale, and has been imported into
the system by the catalogue updater.

Task Sequence:

After logging in the app, the user must select the “New” navigation item from the menu bar
in the bottom. To create a new collection item, 3 steps must be completed:

1. A grid of images or videos appear. The user can upload an image or a video by
taping on the FAB in the bottom right of the screen, and delete already uploaded
media. The user selects an uploaded media item and then taps on the ‘NEXT’ button
at the top right to proceed.

2. In this view a garment item grid is populated. By tapping on one item it can be
selected, then tapping on the ‘NEXT’ button at the top right proceeds to the next
screen.

3. The selected media and garment item are shown. A title must be provided for the
collection item, then by tapping on the ‘UPLOAD’ button, the files are uploaded to the
platform.

The created collection item is now placed in a queue until it is processed and ready.

Use Case id: 2.2.1

Primary Actor: Marketing exec (Brand)

Description

The user can create a new collection item to upload to the platform.

Pre-Conditions:

Filename: eTryOn_D4.1_final.docx Page 152 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

The product being added to the app is not available for sale

Task Sequence:

12.3.3 Usage Scenario 3.0: Collection interactions
Use Case id: 2.3.0

Primary Actor: End user (Consumer)

Description

The user can view and interact with the pending or completed collection items in the
Collection view.

Pre-Conditions:

None.

Task Sequence:

After logging in the app, the user must select the “Collection” navigation item from the
menu bar at the bottom. The ‘Ready’ sub view is shown, which features all the computed
collection items ready for viewing. The user can tap on a collection item to see it in a 3D
Viewer. The user can also delete a collection item by tapping on the delete button that is
situated in the right part of each collection list item. By tapping on the ‘Pending’ tab, the
user can see which collection items are being processed and their creation date. The user
can also delete a pending item to stop the process, by tapping on the delete icon button.

12.3.4 Usage Scenario 4.0: Collection Item interactions
Use Case id: 2.4.0

Primary Actor: End user (Consumer)

Description

The user can view and interact with the collection item once it is done processing.

Pre-Conditions:

1. A collection item must be in the “Ready” state.

Task Sequence:

By tapping on a collection item, the collection item view is loaded where the user can
interact with the item in 3D. Actions that can be performed are the following:

Filename: eTryOn_D4.1_final.docx Page 153 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

● Using finger gestures the user can rotate the model or zoom in/out.
● If a video was selected when creating the collection item, the user can Play/Pause

the item.
● The user can share the image or video to social media by tapping on the share

button in the top right.

12.3.5 Usage Scenario 5.0: User Account actions
Use Case id: 2.5.0

Primary Actor: End user (Consumer)

Description

The user can input personal information in the Account view and perform various actions.

Pre-Conditions:

None.

Task Sequence:

By tapping on the ‘Account’ navigation item in the bottom navigation bar, the user can
access the Account view. There the user can perform the following actions:

● Add user information,
● Connect social media accounts,
● Scan body
● Logout.

12.4 UC2 - DressMeUp Admin CLI

12.4.1 Scenario 1: Add Garment Browzwear file for a product in the catalogue
Actor

3D Designer

Overview

The designer uploads a browzwear file to add a garment so that end users can dress up in
it. The metadata is looked up from the product feed data by product id.

Preconditions

● The designer must have arranged the panel pieces for the garment on the standard
avatar

● The BW file must be named according to the Odlo file naming convention.

Filename: eTryOn_D4.1_final.docx Page 154 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Operation

12.4.2 Scenario 2: Add Garment Browzwear file for a product not in the catalogue
Actor

3D Designer

Overview

The designer uploads a browzwear file to add a garment so that end users can dress up in
it. They must provide the metadata.

Preconditions

● The designer must have arranged the panel pieces for the garment on the standard
avatar

Metadata

Field Description

title The garment title

Filename: eTryOn_D4.1_final.docx Page 155 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

uid A garment unique id (EAN code)

group_id This is the id that corresponds to the specific
garment, regardless of color or size.

gender male or female

size s, m, l, xl, xxl

color A string that denotes the color of the garment

photo A url for a photo depicting the garment

src.file Firebase Storage url for the 3D file

material The garment material

product_type.full_type A string that has the full type (path) of a garment
(e.g.: "Men>Sporting Activity>Running & Trail")

product_type.extracted_type_0 A string that features the first segment of a
full_type string (if applicable)

product_type.extracted_type_1 A string that features the second segment of a
full_type string (if applicable)

product_type.extracted_type_2 A string that features the third segment of a
full_type string (if applicable)

Filename: eTryOn_D4.1_final.docx Page 156 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

12.5 UC3 - Magic Mirror App

Sign Up View

Filename: eTryOn_D4.1_final.docx Page 157 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Sign In View

Filename: eTryOn_D4.1_final.docx Page 158 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Select a Category View

Filename: eTryOn_D4.1_final.docx Page 159 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

User Account Sidebar View

Filename: eTryOn_D4.1_final.docx Page 160 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Browse Garments Grid View

Filename: eTryOn_D4.1_final.docx Page 161 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Saved Items View

Filename: eTryOn_D4.1_final.docx Page 162 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Filter Sidebar 1

Filename: eTryOn_D4.1_final.docx Page 163 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Filter Sidebar 2

Filename: eTryOn_D4.1_final.docx Page 164 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Garment Detailed View

Filename: eTryOn_D4.1_final.docx Page 165 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Real Time Fitting View 1

Filename: eTryOn_D4.1_final.docx Page 166 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Real Time Fitting View 2 - Tension map enabled

Filename: eTryOn_D4.1_final.docx Page 167 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

3D Preview View

12.5.1 Usage Scenario 1.0: Sign up - Sign in
Use Case id: 3.1.0

Primary Actor: End user (Consumer)

Description

The user must sign up or sign in to use the app.

Pre-Conditions:

Filename: eTryOn_D4.1_final.docx Page 168 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

None.

Task Sequence:

The user opens the app and its greeted with a sign up / sign in screen. Providing a
combination of an e-mail and password, the user can sign up for an account. While signing
up the user must also provide birth date, height and weight. The user can alternatively sign
in using an existing account.

12.5.2 Usage Scenario 2.0: Sidebar User Account Actions
Use Case id: 3.2.0

Primary Actor: End user (Consumer)

Description

The user can perform a variety of actions in the User Account sidebar.

Pre-Conditions:

None.

Task Sequence:

After logging in and while on the “Select Category” screen, the user can press on the
‘hamburger’ icon button in the top left, or slide the screen to the right from the left edge, for
the options panel to appear. There are various actions the user can perform: -

● Sign out
● Update personal information (Age, Height, Weight)
● Toggle Units (Metric / Imperial)
● Toggle Garment Reccomendations
● Scan body

12.5.3 Usage Scenario 2.0: Sidebar User Account Actions
Use Case id: 3.2.0

Primary Actor: End user (Consumer)

Description

The user can perform a variety of actions in the User Account sidebar.

Pre-Conditions:

None.

Filename: eTryOn_D4.1_final.docx Page 169 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Task Sequence:

After logging in and while on the “Select Category” screen, the user can press on the
‘hamburger’ icon button in the top left, or slide the screen to the right from the left edge, for
the options panel to appear. There are various actions the user can perform: -

● Sign out
● Update personal information (Age, Height, Weight)
● Toggle Units (Metric / Imperial)
● Toggle Garment Reccomendations
● Scan body

12.5.4 Usage Scenario 2.1: Scan Body
Use Case id: 3.2.1

Primary Actor: End user (Consumer)

Description

Users can use the app to scan their bodies to enable accurate fitting.

Pre-Conditions:

None.

Task Sequence:

From the ‘Select Category’ screen the user can tap on the hamburger icon on the top left to
make the sidebar appear. There the user can tap on the ‘Scan body’ button to begin
scanning.

12.5.5 Usage Scenario 3.0: Browse - Filter - Sort Garments
Use Case id: 3.3.0

Primary Actor: End user (Consumer)

Description

The user can browse garments and refine the browsing experience using sorting and
filtering.

Pre-Conditions:

None.

Task Sequence:

Filename: eTryOn_D4.1_final.docx Page 170 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

After logging in in the app the user will be in the “Select a Category” screen. By selecting a
base category, a grid of garment item thumbnails will appear.

The user can further refine this grid view by sorting or filtering.

To sort garment items:

● The user can tap on the left dropdown component near the top of the screen. The
items can be sorted by recommendations or price (or …).

To filter garment items:

● The user can tap on the right dropdown component to enable a panel to slide from
right to left. In this filtering panel the user can select and enable the filters that are
needed, then press on the “View Items” button to make the results appear in the item
grid view. By tapping on the clear button on the top right the user can reset the filters
to default.

12.5.6 Usage Scenario 4.0: Add items to favorites
Use Case id: 3.4.0

Primary Actor: End user (Consumer)

Description

The user can add a garment to a list of favorites.

Pre-Conditions:

None.

Task Sequence:

When navigating the garments in the grid view, a user can tap on the ‘unfilled’ heart icon to
add that garment item to a favorite list. By tapping it again, it is removed from the list. The
garment item can be also added to favorites from the real-time fit view or the 360 preview
view.

12.5.7 Usage Scenario 4.1: Favorites management
Use Case id: 3.4.1

Primary Actor: End user (Consumer)

Description

Filename: eTryOn_D4.1_final.docx Page 171 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

The user can access a section in the app to see and interact with all of the favorite
garments.

Pre-Conditions:

None.

Task Sequence:

While being on the garment grid view, the user can tap the heart icon in the top right to
access the Favorites view. There the user can perform the following actions:

● Tap on a garment item so the garment item page can load and see all the available
information about it.

● Delete a garment item.
● Multi select garment items for deletion.
● Tap on saved photos the user may have snapped when viewing the garment.

12.5.8 Usage Scenario 5.0: Garment Detailed view interactions
Use Case id: 3.5.0

Primary Actor: End user (Consumer)

Description

The user can view the properties of each garment item and perform various actions.

Pre-Conditions:

None.

Task Sequence:

When navigating the garments in the grid view, a user can tap on a garment item to show its
detailed view. In this view the user can perform the following actions:

● See all the available photos of the garment item by sliding left or right on the photo
component.

● See the title and price of the garment.
● Add the garment to the list of favorites by tapping on the heart icon.
● Switch garment color if applicable.
● Switch size, or see which other sizes are available. Preselected is a size using an

auto fit feature.
● View the garment in real-time fitting on the user self, using the phones front or back

camera, by tapping on the camera button.
● Preview the garment on a 3D model, by tapping on the 3D button.
● Purchase the garment by tapping on the “Buy” button at the bottom.

Filename: eTryOn_D4.1_final.docx Page 172 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

12.5.9 Usage Scenario 5.1: Try on a garment - actions (Real Time Fitting)
Use Case id: 3.5.1

Primary Actor: End user (Consumer)

Description

Try on a garment that is available in the app and see the fit in near real time using the
camera.

Pre-Conditions:

1. (3.5.0) The user must be on the garment detailed view.

Task Sequence:

While on the garment detailed view, the user can tap on the camera icon to try it on, in real
time using the phone cameras. In the real-time fitting view the user can perform the
following actions:

● Add the fitted garment to the favorites list
● Change garment size by tapping on the hanger icon. First tap increases the size by

one, second tap lowers the size by one. Third tap resets to normal fitting.
● Capture a screenshot.
● Capture a video.
● Change camera Front / Back (Cases where someone else is operating the device).
● Set a timer for photo/video capture.
● Enable the tension map of the loaded garment as a colored layer with transparency

on top of the garment.
● If the fitted garment is available in different colors, an indicator is shown to the

bottom of the screen. By swiping left or right on the screen, the user can change the
color of the garment.

12.5.10 Usage Scenario 5.2: 3D Preview a garment & actions
Use Case id: 3.5.2

Primary Actor: End user (Consumer)

Description

Preview a garment in 3D

Pre-Conditions:

1. (3.5.0) The user must be on the garment detailed view.

Filename: eTryOn_D4.1_final.docx Page 173 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

Task Sequence:

While on the garment detailed view, the user can tap on the 3D icon to preview it in the 3D
space. In the 3D preview view the user can perform the following actions:

● Add the fitted garment to the favorites list.
● Change garment size by tapping on the hanger icon. First tap increases the size by

one, second tap lowers the size by one. Third tap resets to normal fitting.
● Manipulate the 3D garment in X,Y,Z axes.

12.6 UC3 - Magic Mirror Admin CLI

12.6.1 Scenario 1: Add Garment FBX file for a product in the catalogue
Actor

3D Designer

Overview

The designer uploads an fbx file to add a garment so that end users can dress up in it. The
metadata is looked up from the product feed data by product id.

Preconditions

● The designer must have arranged the panel pieces for the garment on the standard
avatar

● The fbx file must be named according to the Odlo file naming convention.

Operation

12.6.2 Scenario 2: Add Garment FBX file for a product not in the catalogue
Actor

3D Designer

Overview

The designer uploads a fbx file to add a garment so that end users can dress up in it. They
must provide the metadata.

Preconditions

● The designer must have arranged the panel pieces for the garment on the standard
avatar

Metadata :

Field Description

title The garment title

Filename: eTryOn_D4.1_final.docx Page 174 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

uid A garment unique id (EAN code)

group_id This is the id that corresponds to the
specific garment, regardless of color or
size.

gender male or female

size s, m, l, xl, xxl

color A string that denotes the color of the
garment

photo A url for a photo depicting the garment

src.file Firebase Storage url for the 3D file

material The garment material

product_type.full_type A string that has the full type (path) of a
garment (e.g.: "Men>Sporting
Activity>Running & Trail")

product_type.extracted_type_0 A string that features the first segment of
a full_type string (if applicable)

product_type.extracted_type_1 A string that features the second
segment of a full_type string (if
applicable)

Filename: eTryOn_D4.1_final.docx Page 175 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

product_type.extracted_type_2 A string that features the third segment
of a full_type string (if applicable)

price A price string in euro with two decimals
(e.g.: 64.95)

eshop_link A link to the ODLO e-shop linking to the
specific garment in order for the user to
purchase it

additional_information.custom_label_0 Any additional metadata the garment has
available (for filtering purposes). Taken
from the custom_label fields that are
inside the .csv file that ODLO provides

additional_information.custom_label_1 Any additional metadata the garment has
available (for filtering purposes). Taken
from the custom_label fields that are
inside the .csv file that ODLO provides

additional_information.custom_label_2 Any additional metadata the garment has
available (for filtering purposes). Taken
from the custom_label fields that are
inside the .csv file that ODLO provides

additional_information.custom_label_3 Any additional metadata the garment has
available (for filtering purposes). Taken
from the custom_label fields that are
inside the .csv file that ODLO provides

Filename: eTryOn_D4.1_final.docx Page 176 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

13 Appendix G - SDK specifications from https://etryon.gitlab.io/techdocs/

13.1 QuantaCorp Objective-C SDK

13.1.1 QCScanController
//

// QCScanController.h

// QuantaCorp

//

// Created by Thomas De Wilde on 30/09/2021.

//

#import <UIKit/UIKit.h>

#import <CoreMotion/CoreMotion.h>

#import "QCScanDelegate.h"

extern NSErrorDomain const QCScanErrorDomain;

@interface QCScanController : NSObject

@property (weak) CMMotionManager *motionManager;

@property (weak) id <QCScanDelegate> delegate;

- (instancetype)init NS_UNAVAILABLE;

- (instancetype)initWithMotionManager:(CMMotionManager *)motionManager

withScanDelegate:(id <QCScanDelegate>)scanDelegate;

- (void)presentScanView:(UIViewController *)parent

animated:(BOOL)animated

completion:(void (^ __nullable)(void))completion;

- (void)dismissScanView;

@end

Filename: eTryOn_D4.1_final.docx Page 177 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

13.1.2 QCApiSession
//

// QCApiSession.h

// QuantaCorp

//

// Created by Thomas De Wilde on 14/09/2021.

//

#import <Foundation/Foundation.h>

#import "QCApiToken.h"

#import "QCCreateBodyDTO.h"

#import "QCPicture.h"

extern NSErrorDomain const QCApiErrorDomain;

@interface QCApiSession : NSObject

@property (nonatomic) QCApiToken *token;

- (instancetype)init NS_UNAVAILABLE;

- (instancetype)initWithClient:(NSString *)client

andSecret:(NSString *)secret;

typedef void(^QCApiSessionTokenBlock)(QCApiToken *token, NSError *error);

typedef void(^QCApiSessionIdentifierBlock)(NSNumber *identifier, NSError *error);

typedef void(^QCApiSessionSuccessBlock)(BOOL success, NSError *error);

- (void)authenticateWithUsername:(NSString *)username

andPassword:(NSString *)password

withCallback:(QCApiSessionTokenBlock)callback;

- (void)authenticateWithRefreshToken:(NSString *)refreshToken

withCallback:(QCApiSessionTokenBlock)callback;

- (void)createBody:(QCCreateBodyDTO *)body

withCallback:(QCApiSessionIdentifierBlock)callback;

- (void)createScanForProject:(NSNumber *)projectId

Filename: eTryOn_D4.1_final.docx Page 178 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

andBody:(NSNumber *)bodyId

withFrontPicture:(QCPicture *)frontPicture

andSidePicture:(QCPicture *)sidePicture

withCallback:(QCApiSessionIdentifierBlock)callback;

- (void)createCallbacks:(NSDictionary *)callbacks

forScan:(NSNumber *)scanId

withCallback:(QCApiSessionSuccessBlock)callback;

@end

13.1.3 QCScanDelegate
//

// QCScanDelegate.h

// QuantaCorp

//

// Created by Thomas De Wilde on 28/09/2021.

//

#import <Foundation/Foundation.h>

#import "QCPicture.h"

#import "QCScanError.h"

@protocol QCScanDelegate <NSObject>

@optional

- (void)scanViewWillAppear;

- (void)scanViewWillDisappear;

@required

- (void)didCancelScanCapture:(QCScanError *)reason;

- (void)didCaptureFrontPicture:(QCPicture *)picture;

- (void)didCaptureSidePicture:(QCPicture *)picture;

@end

Filename: eTryOn_D4.1_final.docx Page 179 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

13.1.4 QCApiToken
//

// QCApiToken.h

// QuantaCorp

//

// Created by Thomas De Wilde on 14/09/2021.

//

#import <Foundation/Foundation.h>

#import "QCJsonSerializableObject.h"

@interface QCApiToken : NSObject

- (instancetype)init NS_UNAVAILABLE;

- (instancetype)initWithAccessToken:(NSString *)accessToken

refreshToken:(NSString *)refreshToken

expiresIn:(NSTimeInterval)seconds

tokenType:(NSString *)tokenType;

- (instancetype)initWithAccessToken:(NSString *)accessToken

refreshToken:(NSString *)refreshToken

expirationDate:(NSDate *)expirationDate

tokenType:(NSString *)tokenType;

@property (readonly) NSString *accessToken;

@property (readonly) NSString *tokenType;

@property (readonly) NSDate *expirationDate;

@property (readonly) NSString *refreshToken;

@property (readonly) BOOL isExpired;

@end

Filename: eTryOn_D4.1_final.docx Page 180 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

13.1.5 QCCreateBodyDTO
//

// QCCreateBodyDTO.h

// QuantaCorp

//

// Created by Thomas De Wilde on 16/09/2021.

//

#import <Foundation/Foundation.h>

#import "QCJsonSerializableObject.h"

@interface QCCreateBodyDTO : NSObject <QCJsonSerializableObject>

- (instancetype)init NS_UNAVAILABLE;

- (instancetype)initWithCompany:(NSNumber *)companyId

withProject:(NSNumber *)projectId

withAlias:(NSString *)alias

withGender:(NSString *)gender

withHeight:(NSNumber *)height;

@property NSString *alias;

@property NSString *firstName;

@property NSString *lastName;

@property NSString *crmId;

@property NSNumber *userId;

@property NSNumber *companyId;

@property NSNumber *height;

@property NSNumber *weight;

@property NSString *gender;

@property NSString *notes;

@property NSNumber *linkToProject;

@property NSDictionary *custom1;

@property NSDictionary *custom2;

@property NSDictionary *custom3;

@property NSDictionary *custom4;

@property NSDictionary *custom5;

@property NSDictionary *custom6;

@property NSDictionary *custom7;

Filename: eTryOn_D4.1_final.docx Page 181 of 182

D4.2 Initial eTryOn middleware and APIs eTryOn-951908

@property NSDictionary *custom8;

@property NSDictionary *custom9;

@property NSDictionary *custom10;

@end

13.1.6 QCPicture
//

// QCPicture.h

// QuantaCorp

//

// Created by Thomas De Wilde on 16/09/2021.

//

#import <Foundation/Foundation.h>

@interface QCPicture : NSObject

@property NSURL *location;

@property NSDictionary *metadata;

@property (readonly) NSData *png;

@end

13.1.7 QCScanError
//

// QCScanError.h

// QuantaCorp

//

// Created by Thomas De Wilde on 04/10/2021.

//

typedef NS_ENUM(NSUInteger, QCScanError) {

QCScanErrorBadInputDevice,

QCScanErrorBadOutputDevice

};

Filename: eTryOn_D4.1_final.docx Page 182 of 182

