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Abstract Fine-grained information extraction from fashion imagery is a challeng-
ing task due to the inherent diversity and complexity of fashion categories and
attributes. Additionally, fashion imagery often depict multiple items while fashion
items tend to follow hierarchical relations among various object types, categories
and attributes. In this study, we address both issues with a 2-step hierarchical deep
learning pipeline consisting of (1) a low granularity object type detection module
(upper-body, lower-body, full-body, footwear) and (2) two classification modules
for garment categories and attributes based on the outcome of the first step. For
the category and attribute-level classification stages we examine a hierarchical label
sharing (HLS) technique in two settings: (1) single-task learning (STL w/ HLS)
and (2) multi-task learning with RNN and visual attention (MTL w/ RNN+VA).
Our approach enables progressively focusing on appropriately detailed features for
automatically learning the hierarchical relations of fashion and enabling predictions
on images with complete outfits. Empirically, STL w/ HLS reached 93.99% top-3
accuracy while MTL w/ RNN+VA reached 97.57% top-5 accuracy for category
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classification on the DeepFashion benchmark, surpassing the current state-of-the-art
without requiring landmark or mask annotations nor specialised domain expertise.

1 Introduction

Fashion, being a primarily visually-driven domain, has recently attracted the interest
of computer vision researchers for numerous tasks, including attribute recognition,
landmark detection, outfit matching and item retrieval [1]. In this study, we address
two central pattern recognition problems on fashion imagery, namely clothing cat-
egory and attribute classification. Contrasted with other domains, fashion datasets
tend to be more diverse and fine-grained - relating to categories, patterns, styles,
textile materials, colors, length among many others - rendering the training of deep
learning computer vision models a rather challenging endeavour. Additionally, cate-
gories and attributes follow hierarchical relationships, meaning that certain attributes
apply only to specific categories of certain object types (e.g. tie-front > blouse >
upper-body). Finally, fashion imagery often depictsmultiple garment items per image
increasing the complexity of the problem.

To address the aforementioned problems, we propose a hierarchical two-stage
deep learning pipeline that employs “hierarchical label sharing” (HLS). Essentially,
HLS shares the predicted label of the previous task to the next; meaning the sharing
of the object type labels with the category-level classifier and the predicted category
with the attribute classifier. Our two-stage pipeline first identifies low granularity
object types (upper-body, lower-body, full-body, footwear) in fashion images and
then classifies the corresponding bounding boxes with regards to category and fine-
grained attributes. For the second stage, we examine the performance of HLS in two
settings: 1) single-task learning (STL w/ HLS) and 2) multi-task learning (MTL)
with a recurrent neural network (RNN) and visual attention (VA). The “MTL w/
RNN+VA” method incorporates HLS in the RNN decoder. We train and evaluate
both methods on DeepFashion [2], a widely used fashion dataset and the Mallzee
datasets - created by Mallzee1 - that also includes footwear. Combining a Faster
R-CNNwith an InceptionV2 backbone for object type detection and an EfficientNet-
B4 architecture for category and attribute classification, we were able to surpass
the state-of-the-art on category classification on the DeepFashion dataset. More
specifically, “STL w/ HLS” scored 93.99% top-3 accuracy while “MTL w/ RNN
+ VA” scored 97.57% top-5 accuracy; the highest achieved scores for the dataset.
A significant advantage of HLS is the ability to learn hierarchical relations among
fashion attributes/categories/object typeswithout requiringmanually crafted rules by
domain experts. Additionally, “MTL w/ RNN+VA” has the advantage of producing
attention plots which are useful for interpreting the model’s predictions. Finally, our
two-stage pipeline has the ability to work efficiently with real-world fashion imagery
without requiring further types of annotation.

1 Mallzee is a fashion product aggregator company that provides mobile e-commerce services
(https://mallzee.com/)
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The main contributions of our work can be summarised as follows:

• We propose two novel hierarchical methods for category and attribute classifica-
tion on fashion imagery, “STL w/ HLS” and “MTL w/ RNN+VA”, that compete
with the domain’s state of the art.

• We utilize a two-stage pipeline recognising patterns in full-scale fashion imagery
depicting multiple garments.

• We expand our analysis to footwear that are missing from DeepFashion (DF1) [2]
and DeepFashion2 (DF2) [3] benchmarks.

2 Related Work

Recently, research on fashion related image classification has received a lot of at-
tention from multiple deep learning disciplines, including image processing [1],
multi-modal [4] [5] and scene graph learning [6]. In this section, we will mainly
focus on the first, image processing, since it is more relevant to our work. Generally,
category classification on fashion imagery is formulated as a multi-class classifi-
cation problem while attribute classification as a multi-label classification problem
whose objective is to identify fine-grained attributes relating to styles, patterns, fabric
and length among others.

DeepFashion is a publicly available and widely used fashion related dataset,
created by Liu et al. (2016) [2]. In the original paper, Liu et al. (2016), proposed
FashionNet in order to assess the usefulness of DeepFashion. FashioNet jointly
learned to predict clothing landmarks and attributes. The model was trained end-
to-end to first estimate the landmark locations, pool/gate the extracted features and
then identify the relevant attributes. Since the publication of DeepFashion and the
development of FashionNet, the former has been used as a benchmark dataset and
the latter as a baseline model for category and attribute classification in fashion.

Corbiere et al. (2017) [7] utilized a weakly supervised approach that learns from
large-scale noisy data. Their model was trained contrastively, with the use of negative
sampling, from image-text pairs with noisy and mostly unprocessed texts. By fine-
tuning a dense layer on the DeepFashion dataset this approachwas able to outperform
FashionNet in texture and shape-related attributes but not on the overall evaluation.

Wang et al. (2018) [8] proposed the incorporation of domain knowledge to im-
prove attribute classification by developing a fashion grammar capturing kinetic and
symmetrical relationships between clothing landmarks. The researchers introduced
a bidirectional convolutional recurrent network that leveraged their fashion grammar
during the landmark prediction process. After being trained for landmark predic-
tion, two branched fully connected layers were added and trained for category and
attribute classification.

Ye et al. (2019) [9] combined cost-sensitive learning and over-sampling in order
to rectify the problem of class imbalance present in DeepFashion. The authors in-
troduced a weighted loss function that only back-propagated the most informative
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nodes, therefore focusing on minority classes as the training progresses, and com-
bined it with a semi-supervised Generative Adversarial Network for over-sampling
the minority classes by producing synthetic samples.

Finally, Li et al. (2019) [10], designed a multi-task model that is trained end-to-
end for landmarks, category, and attributes detection. They incorporated two knowl-
edge sharing techniques regarding boundary awareness and structure awareness for
transferring relevant information across tasks, yielding 93.01% top-3 accuracy on
category classification and 59.83% top-3 recall on attribute classification, reach-
ing the currently highest score on DeepFashion. The results for all aforementioned
studies can be seen in Table 7.

A limitation of DeepFashion is that its images are annotated with only one cloth-
ing item even if more garments are visible. This phenomenon can create challenges
during both training and evaluation stages [3]. To mitigate this problem, all afore-
mentioned research works applied cropping of the training and testing images using
the ground truth bounding boxes. However, models solely trained on cropped im-
ages can only extract local features from the image and thus can not generalise to
images with complete outfits. To overcome this issue, we propose a hierarchical
pipeline that separates the tasks of object type detection, category classification and
attribute classification. A second limitation of DeepFashion is its lack of footwear,
a significant product category for the fashion industry. For this reason, by utilizing
Mallzee’s database we created a new dataset that includes rich annotations about
categories and attributes related to footwear in addition to upper-body, lower-body
and full-body garments.

3 Methodology

3.1 Problem formulation

Pattern recognition on fashion imagery is considered a rather challenging task due
to the inherent diversity and complexity of fashion items and their relations [1].
Fashion items tend to follow hierarchical relations between different object types,
categories and attributes. “object types” are considered high-level descriptors of
garments denoting their relation to the human body. Garments can be classified
into upper-body, lower-body, full-body garments and footwear. Furthermore, fashion
items can be classified into various categories and attributes. In this context, category
classification is defined as a multi-class task consisting of mid-level descriptors such
as “dress”, “shirt”, “trousers”, while attribute classification is defined as a multi-label
task with fine-grained descriptors such as “floral”, “pencil”, “frill”. In fashion, object
types, categories and attributes tend to follow hierarchical relations. Following the
previous examples, a “dress” belongs to the “full-body” object type and “shirt” in
“upper-body”. The “frill” attribute is applicable to “dresses” - as a specialised “style”
of “dress” - but not for example to footwear. However, other attributes such as “floral”
can theoretically be applied to all categories of garments since it describes the print
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or pattern of the garment. Another common challenge in the fashion domain is that
fashion imagery often depict complete outfits. Thus, in production settings, a pattern
recognitionmodel should be able to recognisemultiple object types and their location
in full-scale images. To address both challenges, we propose a hierarchical two-stage
deep learning pipeline that utilizes hierarchical label sharing (HLS) for automatically
learning relations among garment object types, categories and attributes in full-scale
fashion imagery.

3.2 Proposed architectures

In this study we attempt to improve the classification of garment categories and
fine-grained attributes by automatically learning the existing hierarchical relations
among garment attributes, categories and object types while being able to perform
predictions on fashion imagery with complete outfits. To this end, we propose a
hierarchical two-stage deep learning pipeline that employs hierarchical label sharing
(HLS). HLS shares the predicted labels from the previous stage to the next; meaning
that the object type is shared with the category classifier and the category label
is shared with the attribute classifier. Our proposed pipeline follows two-stages 1)
object type detection and 2) category and attribute classification. A similar method
has been applied for self-driving cars [11] but to the best of our knowledge, this is
the first time it is attempted in the fashion domain.

3.2.1 First stage: object type detection

The first stage of our deep learning pipeline performs object type detection that
identifies the object type and location (bounding boxes) of fashion-related objects on
full-scale images. We utilized transfer learning where object type detection models,
pre-trained on large-scale image dataset, are fine-tuned on a new dataset. We ex-
perimented with variants of Faster-RCNN [12], CenterNet [13] and EfficientNet-D1
and D2 [14]. These models were fine-tuned on the Mallzee dataset and the DF2
datasets; discussed in Section 4.1. Afterwards, we passed the images through the
fine-tuned object type detection model and extracted the bounding boxes of each
detected garment and its object type label.

3.2.2 Second stage: Category and attribute classification

The second stage of our proposed pipeline performs category and attribute classifi-
cation employing HLS. We examine how HLS works in two settings: 1) single-task
learning with hierarchical label sharing (STL w/ HLS) and 2) multi-task learning
with RNN and visual attention (MTL w/ RNN+VA); that employs HLS in the RNN
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(a) Workflow for “single-task learning” (STL) and “single-task learning with hierarchical label
sharing” (STL w/ HLS) methods. The red intermittent line is only applied on the STL w/ HLS
methodwhere the label from the previous stage is sharedwith the next; meaning the object type label
is shared with the category classifier and the category label is shared with the attribute classifier.

(b) Workflow for the “multi-task learning with RNN and visual attention” method relying on an
encoder-decoder architecture. The vision encoder produces the image representations which are
passed through an attention mechanism. In the initial stage, the attentive context vector is given
to the RNN alongside the object type label embeddings and the hidden state 0 (H0), a series of
zero values. The first resulting hidden state (H1) is passed through two fully connected layers of
which the latter is activated by a softmax function with units equal to the number of categories. The
context vector is re-calculated given the same image features and the H1 which are passed through
the RNN alongside the predicted category embeddings and the H1. The predicted H2 is passed
through two fully connected layers of which the later, with units equal to the number of attributes,
is activated by a sigmoid function.

Fig. 1: Workflows for the proposed hierarchical methods.



Hierarchical Label Sharing in Fashion 7

decoder. However, in order to assess the effectiveness of HLS we also define a con-
ventional “STL” method that does not utilize HLS (referred to as “Baseline STL”).

Baseline Single task learning (STL). The training workflow for the Baseline
STL follows a conventional image classification process. The images are first passed
through the fine-tuned object detection model and the identified fashion-related ob-
ject types are cropped around the predicted bounding boxes. The cropped images
are passed through an image augmentation pre-processing layer that performs alter-
ations to the images as a method of regularisation and by extension the mitigation
of overfitting. More specifically, the images are horizontally flipped at random and
are randomly rotated and zoomed by ±10%. The augmented images are then passed
through the base convolutional encoder model. The features extracted from the last
convolutional layer of the base model are pooled with the use of global average
pooling thus transforming the output into a 2D tensor. A classification dense layer is
added on top. In the case of category classification (a multi-class problem) the dense
layer is activated by a softmax while for attribute classification (mutli-label task),
the last dense layer is activated by a sigmoid function. Subsequently, the model is
trained by an adaptive gradient descent optimizer (Adam or RMSProp) which per-
forms gradient updates per individual parameter. The network’s loss is calculated
by the categorical cross-entropy and the binary cross-entropy for category and at-
tribute classification respectively. The workflow is shown in Figure 1a (without the
intermittent lines).

Hierarchical label sharing (HLS). Our first approach, “STL w/ HLS”, follows
the same workflow as “Baseline STL” with the addition that the predicted labels
from the previous stage are passed to the next. This means that the object type
labels for each image are shared with the category classifier, after being passed
through an embedding layer and then concatenated with the image representation
extracted from the convolutional backbone. Similarly, the garment-level category is
shared with the attribute classifier. We hypothesize that HLS will be instrumental
in automatically learning hierarchical relations among fashion attributes, categories
and object types. The workflow for this method is shown in Figure 1a when applying
the red intermittent lines.

Multi-task learning with RNN and visual attention. Our second approach,
“MTL w/ RNN+VA” method relies on multi-task learning (MTL) where the same
neural network is fine-tuned by two separate loss functions simultaneously. The
network is optimised for both category and attribute classification simultaneously
based on the categorical cross entropy and the binary cross entropy loss functions
respectively. Our MTL architecture - partly inspired by [15] - integrates HLS in a
recurrent neural network (RNN) decoder, more precisely a Gated Recurrent Unit
(GRU). Moreover, we employ the attention mechanism proposed by [16] in order to
enable the model to focus only on the relevant part of the image for the prediction of
certain categories and attributes. A notable advantage of this approach is the ability
to plot attention weights and thus interpret the model’s predictions.

More specifically for our implementation, each image first passes through a vision
encoder convolutional neural network (CNN) in order to extract its visual features
� = [ 51, 52, . . . , 5=], where 58 ∈ R3 . The attention mechanism receives as input the
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sequence of vectors � along with the previous GRU hidden state ℎC−1 ∈ RB and
calculates the “context” vector 2C ∈ R3 with C = 1, 2. The attention weights 0C8 and
the context vector 2C are calculated as below:

4C8 = + · C0=ℎ((,1 58 + 11) + (,2ℎC−1 + 12)) (1)

0C8 =
4G?(4C8))∑=
9=1 4G?(4C 9 )

(2)

2C =

=∑
9=1
0C 9 5 9 (3)

where + ∈ RD ,,1 ∈ RD×3 ,,2 ∈ RD×B and 11, 12 ∈ RD are trainable parameters.
The calculated context vector is then concatenated with the object type embed-

dings and given as input to the decoder network in order to calculate the next hidden
state:

ℎ1 = �'* (ℎ0, [21; �>]) (4)

where �> are learnable embedding vectors for each object type > and ℎ0 is initialized
with zeros. The output of the decoder ℎ1 is then passed through two fully connected
layers:

*22 (*
2
1 (ℎ1)) (5)

of which the final *22 classifies the image into a garment category, through softmax
activation. Consequently, the category and the decoder’s previous state ℎ1 are given
again to the decoder which performs the same process for the attribute classification:

ℎ2 = �'* (ℎ1, [22; �2]) (6)

*02 (*
0
1 (ℎ2)) (7)

where �2 are learnable embedding vectors for each garment category 2. The MTL
learning pipeline can be seen in Figure 1b. Finally, the loss function to be minimized
is the sum of the the two losses (categorical and binary cross entropy) related to
category and attribute classification respectively.

For the second stagewe experiment with InceptionV3, Xception and EfficientNets
fromB0 to B4 with pre-trained weights on ImageNet or from self-training with noisy
students [17]. These models consist of relatively limited number of parameters but
have been shown to perform very well on the ImageNet benchmark2. For each
model we also perform hyper-parameter tuning based on the validation accuracy,
for identifying the optimal learning rate, dropout rate, batch size and the optimal
number of pre-trained layers to fine-tune.

2 https://paperswithcode.com/sota/image-classification-on-imagenet
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4 Experimental Setup

In this section we discuss the datasets and evaluation metrics used in our study. For
our experiments, we made use of two publicly available, large-scale, fashion image
datasets, DeepFashion (DF1) [2] and DeepFashion2 (DF2) [3]. Additionally, we
created a new dataset, which we termMallzee dataset, that also contains annotations
for footwear that were lacking from both DF1 and DF2.

4.1 Datasets

Public fashion datasets. DF1 consists of 289,222 images with rich annotations
regarding 46 clothing categories and 1,000 fine-grained attributes related to textures,
fabrics, shapes, parts and styles. A significant limitation of DF1 is that each image
contains only one annotated garment even if more than one are visible. DF2 consists
of 491,895 images in total annotated on 13 categories. Moreover, DF2 expands upon
DF1 by including pixel-level mask annotations and by annotating multiple items per
image.

We mainly utilize DF1 for the category and attribute classification and DF2 for
the task of object type detection. The categories of DF2 are re-mapped as seen in
Table 1 to fit our needs for low-granularity fashion-related object types.

Additionally, we calculate the Imbalance Ratio (IR), the MeanIR and SCUMBLE
metrics for each class in order to examine the level of class co-occurrence and
imbalance in multi-label data [18].

�'(H) =
argmax.|. |

H′=.1
(∑ |� |

8=1 ℎ(H
′, .8))∑ |� |

8=1 ℎ(H,.8)
, ℎ(H,.8) =

{
1 H ∈ .8
0 H ∉ .8

(8)

"40=�' =
1
|. |

.|. |∑
H=.1

�'(H) (9)

(�*"�!� (�) = 1
|� |

|� |∑
8=1
[1 − 1

�'8
(
|! |∏
;=1

�'8;)1/ |! |] (10)

where D is amulti-label dataset,. its full set of labels, H the label being analyzed, and
.8 the labelset of the i-th instance in D. IR, shown in Eq. 8, is calculated individually
for each label as the ratio between the majority class divided by all other classes
individually. MeanIR, calculated by Eq. 9, simply reflects the mean value across
all IRs. SCUMBLE, calculated by Eq. 10, takes into account both the quotient and
product among the IR. The initial re-mapped DF2 had a meanIR of 1.6528 and a
SCUMBLE metric of 0.1321 but after randomly down-sampling the dataset, with
42,000 objects per class in the training set and 8,000 objects per class in the validation
set, the meanIR is reduced to 1 and SCUMBLE to 0, their optimal values.
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Table 1: Garment categories per object type, for the DeepFashion2 (DF2) dataset
and the Mallzee dataset. DF2 categories were re-mapped into the object type labels
for the object type detection task.

Object type DF2 categories Mallzee dataset categories

Upper-body Short sleeve top, Sweaters, Blouses,
Long sleeve top, Coats and jackets, Formal jackets,
Short sleeve outwear, Shirts, Hoodies, Camis,
Long sleeve outwear, Tshirts, Cardigans, Tanks
Vest, Sling

Lower-body Shorts, Trousers, Skirt Shorts, Trousers, Skirts, Jeans

Full-body Short sleeve dress, Dresses, Jumpsuits, Playsuits
Long sleeve dress,
Vest dress, Sling dress

Footwear - Boots, Flats, Heels, Sandals, Trainers

Mallzee dataset. Considering the importance of footwear in the fashion indus-
try, we deem their lack from both DF1 and DF2 to be a significant shortcoming.
Therefore, we decided to create a new dataset that also includes annotated footwear
imagery. The dataset is sourced from Mallzee, a popular fashion e-commerce web-
site, and it comprises three parts, one per task: object type detection, category-level
classification and attribute-level classification.

For the object type detection task, we created a dataset with annotated bounding
boxes around the garments. The “object type detection dataset” consists of four
classes: upper, lower, full-body and footwear. Our objective was to create a balanced
dataset in terms of all four classes. To this end, we manually annotated images
with bounding boxes with the use of LabelImg3. In order to get more images per
class, we made use of Haar Cascades4 for automatically detecting bounding boxes
from flat-lay garments. Furthermore, in contrast to DF1 - that only contains one
annotation per image - we annotated all garments present in an image. During the
manual annotation process, our central criterionwas that we annotated garments only
if they were fully visible; or visible to a significant degree. The resulting “object
type detection dataset” was still naturally imbalanced; since for example footwear
often come in pairs. To overcome this issue, we created a more balanced dataset by
up-sampling the minority classes with the use of image augmentation techniques5.
More specifically, we applied vertical flips and rotations for flat-lay images and the
same plus horizontal flips for manual annotations. The final “object type detection
dataset” comprises 5,343 images depicting 15,359 objects: 5,160 upper-body, 3,749
lower-body, 4,985 full-body and 5,554 footwear images. A separate sample of 634

3 https://github.com/tzutalin/labelImg
4 https://github.com/opencv/opencv/tree/master/data/haarcascades
5 We did not include instances that contained upper-body garments; being the majority class.
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Table 2: Attribute key-value pairs for theMallzee dataset following a taxonomy and
the categories they can be applied to.

Att. key Attribute value Applies to

Pr
in
ts

Ethnic, Graphic, Floral, Tropical, All objects & categories
Striped, Checked, Animal Print,
Polka dots, Paisley, Spots, Tartan,
Geometric, Colourblock, Fair isle,
Camouflage, Grid print, Dip-dyed,
Tie-dyed, Zigzag, Washed

St
yl
es

Duster, Parka, Trench, Peacoat, Coats & Jackets
Coatigan, Duffle, Bomber, Biker,
Puffer, Anorak, Windcheater, Borg
Windbreaker, Coach, Quilted, Trucker
Wedding, Bridesmaid, Bodycon, Tunic, Dresses
Jumper, Shirt, Shift, Slip, Tea, Cocktail
Pinafore, Wrap, Sundress, Smock
Sweatpants, Leggings, Culottes, Peg, Trousers
Harem, Capri, Formal, Chino
Sweatshorts, Cutoff, Bermuda, Shorts
Skort, Running, Cycling
Wellies, Winter, Chukka, Chelsea Boots
Biker, Cowboy, Sock
Boxy, Varsity, Baseball, Boyfriend, T-shirts
Fitted, Sport, Polo, Muscle
Loafers, Brogues, Ballerinas, Flats
Plimsolls, Boat, Moccasins
Gladiator, T-bar, Toe-thong Sandals
Flip-flops, Sliders
Pencil, Skater, A-line, Frill, Flowy Skirts & Dresses
Mules, D’orsay, Espadrilles Flats & Heels
Jeggings, Mom, Boyfriend Jeans
Tie-front, Bib, Popover Blouses
Formal, Collarless Shirts
Waterfall Cardigans
Blazer Formal jackets
Cargo Trousers & Shorts
Court Heels

Table 3: Details for DeepFashion, DeepFashion2 and the Mallzee dataset.

Dataset Images Categories Attributes

DeepFashion 289,222 46 1000
DeepFashion2 491,895 13 -

Mallzee (object-level) 16,550 4 -
Mallzee (category-level) 229,633 22 -
Mallzee (attribute-level) 310,753 16 110
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images depicting 1,191 objects (303 upper-body, 205 lower-body, 175 full-body and
508 footwear) is used for evaluation.

For the category-level and attribute-level classification datasets we did not rely
on manual annotation. Instead we retrieved the images fromMallzee’s database with
queries related to 22 garment categories and the 110 attributes classes related to
patterns/prints and styles. We queried the target categories and attributes names and
all their synonyms we could identify. We applied a series of rules and regular ex-
pressions for ensuring minimal mismatch rate.The final datasets comprise 229,633
and 310,753 images for category and attribute classification, respectively. In order
to mitigate minor class imbalances we applied image augmentation for the minority
classes; similarly to the “object-detection dataset”. The 22 category labels can be
seen in Table 1 grouped by their object type. Similarly, the attribute key-value pairs
can be seen in Table 2, following Mallzee’s fashion taxonomy. Table 3, presents
and compares the statistics of DeepFashion, DeepFashion2 and Mallzee datasets.
The attribute-level Mallzee dataset does not contain all 22 categories. Instead it has
16 slightly broader clustered labels which include: ‘activewear’, ‘boots’, ‘dresses’,
‘flats’, ‘heels’, ‘jackets’, ‘jeans’, ‘shirts’, ‘shoes’, ‘shorts’, ‘skirts’, ‘sweaters’, ‘tops’,
‘trainers’, ‘trousers’, and ‘t-shirts’. For our experiments, the two datasets were ran-
domly shuffled and split into training, validation and testing sets with 0.8, 0.1, 0.1
ratios respectively.

4.2 Evaluation

For the evaluation of the object type detection task we rely on the COCO-challenge
metrics6 for the object type detection metrics, with a focus on the mean average
precision (mAP) metric averaged over 10 intersections over union thresholds (IoU)
(from 0.5 to 0.95 with steps of 0.05 size) - which is the central metric of the
competition - and the average Recall@K (AR@K) that signify the average recall
given K detections per image. For category classification we rely on top-K accuracy
for K=3,5 and the recall rate at top-K for K=3,5 for attribute classification; since
these metrics are also used to benchmark DF1 [2]. For experiments on the Mallzee
dataset we also calculate and report the metrics for K=1. All eight methods presented
in the results section with which we compare our proposed architectures, have been
previously mentioned and elaborated in Section 2.

6 https://cocodataset.org/#detection-eval
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5 Results

5.1 Object type detection

On the DF2 dataset, CenterNet consistently shows the highest performance; scoring
a mean average precision (mAP) of 75.6% and an average recall at 100 (AR@100) of
86.9%. On the other hand, using the Mallzee object type detection dataset, a Faster
R-CNN model yields the highest scores with a mAP of 80.6% and an AR@100 of
85.8% for 4 classes. The performance of all object type detection models can be
seen in Table 4. We use the default hyper-parameters for all models, as given by
the TensorFlow object detection API7. The only exceptions are the batch size that
is reduced to 2 (so as to fit in the GPU memory) while the learning rate is reduced
to 1e-4 for EfficientDet-D1 and D2 since the default value is very high and causes
overfitting during fine-tuning.

Table 4: Object type detection models trained on the re-mapped DeepFashion2
(DF2) and theMallzee dataset. Evaluations performed on test sets of each dataset in
terms of mean Average Precision (mAP) and Average Recall at 100 (AR@100). The
re-mapped DF2 includes three classes (upper/lower/full-body) while the Mallzee
dataset also includes footwear. (Bold denotes the best performing model by metric)

Evaluation Metric Training Evaluation Faster R-CNN EfficientDet-D1 EfficientDet-D2 CenterNet

mAP DF2 DF2 73.0 72.1 64.8 75.6
AR@100 83.7 81.9 76.7 86.9

mAP DF2 Mallzee 73.9 73.6 69.8 76.9
AR@100 84.2 82.8 80.4 86.8

mAP Mallzee Mallzee 80.6 62.6 60.5 73.2
AR@100 85.8 75.2 70.7 80.7

5.2 Category and attribute classification

5.2.1 Results on the Mallzee dataset

For the category and attribute classification tasks we experiment with hierarchical
label sharing (HLS) in two settings, 1) single-task learning (STL w/ HLS) and
2) multi-task learning (MTL) with RNN and visual attention (VA). As baseline
comparison we define a conventional STL method that does not utilize HLS; named

7 https://tensorflow-object-detection-api-tutorial.readthedocs.io
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Table 5: Single-task learning models trained and evaluated on the Mallzee dataset
for category classification. (Bold denotes the best performing model by dataset)

Training Dataset # of categories Network Accuracy@1

Full-body only 3 EfficientNet-B1 91.77
EfficientNet-B2 92.34
EfficientNet-B3 93.63
EfficientNet-B4 94.90

Xception 93.46
InceptionV3 91.55

Lower-body only 4 EfficientNet-B1 91.79
EfficientNet-B2 91.46
EfficientNet-B3 93.16
EfficientNet-B4 94.44

Xception 93.75
InceptionV3 92.70

Footwear only 5 EfficientNet-B1 93.39
EfficientNet-B2 93.89
EfficientNet-B3 93.94
EfficientNet-B4 93.86

Xception 93.17
InceptionV3 91.87

Upper-body only 10 EfficientNet-B1 85.31
EfficientNet-B2 86.04
EfficientNet-B3 86.33
EfficientNet-B4 88.15

Xception 86.29
InceptionV3 83.50

Full dataset 22 EfficientNet-B3 91.09
EfficientNet-B4 92.24

Baseline STL. Additionally, we experiment with training four separate STL models,
one for each object type. This approach could theoretically improve the specialization
of each model and thus improve their predictive accuracy. As can be seen in Table
5, a fine-tuned EfficientNet-B4 for all 22 categories on the Mallzee dataset, yields
a 92.24% accuracy@1 while the mean accuracy of the four separate models has
a slight +0.6% advantage. However, having a single model for all classes will not
suffer when encountering misclassified items from the object type detection phase.
Meaning that for example, an object wrongly classified as an “upper-body” type
while actually being “full-body” will be passed in the wrong model that has not
been trained to recognise upper-body type items. We consider that the very slight
advantage in accuracy is outweighed by the aforementioned disadvantage. Therefore,
having a hierarchical STL architecture - where the output of the object type detection
stage is passed directly to separate specialised classifiers - is not deemed optimal.
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Table 6:Comparing the twohierarchical label sharingmethodswith the baseline STL,
for category and attribute classification when trained and evaluated on the Mallzee
dataset. STL stands for single task learning and MTL for multi-task learning. (Bold
denotes the best performance)

Method Category Attributes

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Baseline STL 90.10 98.55 99.48 78.75 94.32 96.78
STL w/ HLS 90.67 98.72 99.53 77.62 93.70 96.80
MTL w/ RNN+VA 87.63 98.01 99.31 62.74 83.81 90.32

The results show that the EfficientNet-B4 architecture consistently outperforms
all other models when its 100 to last layers (from 474 in total) are fine-tuned with
the exception of the batch normalization layers. The aforementioned number of lay-
ers concerns the Keras8 implementation of EfficientNet and includes ‘reshaping’,
‘reduce’, ‘multiplication’ and ‘activation’ layers as well as the number of convolu-
tional, dense and batch normalisation layers. Fine-tuning additional layers does not
further improve the model’s overall performance while also increasing the required
computational resources and time. As expected, we found that low learning rates,
either 1e-4 or 5e-5, are optimal for all cases of fine-tuning the pre-trained networks.
Moreover, higher dropout rates offer stronger regularisation which translates into
increased training stability, less overfitting and overall improved performance. Fi-
nally, making use of pre-trained weights from self-trained EfficientNets with noisy
students [17] improves the accuracy of the architecture when compared to using
weights pre-trained exclusively on ImageNet. We apply the aforementioned insights
from Baseline STL to both tasks and both methods employing HLS. For the follow-
ing analysis we use all images of the Mallzee dataset but we did not utilize all 22
categories. Instead we mapped the categories onto the 16 categories found in the
attribute-level dataset; so as to ensure the comparability of results.

As illustrated in Table 6, for category classification on the Mallzee dataset, STL
w/HLS outperforms the othermethods in terms of top-1, top-3 and top-5 accuracy on
categories. For attribute classification, HLS does not seem to further improve STL’s
performance with the exception of a negligible +0.02% in terms of top-5 recall for
attributes. MTL w/RNN+VA has the lowest performance of the three settings across
all metrics.

Finally, we created a merged pipeline that included the best performing models
per task; object type detection, category and attribute classification. The pipeline
receives full-scale fashion images which are processed by the object type detector
that predicts the garments’ bounding boxes. The images are then cropped around
their predicted bounding boxes and they are individually passed to the category and
attribute classifiers. Three inference examples are presented in Figure 2.

8 https://keras.io
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(a) (b) (c)

Fig. 2: Inference examples from theMallzee datasetwith full-scale images, depicting
multiple garments. Red bounding boxes are for upper-body, blue for lower-body,
green for full-body garments and yellow for footwear. The images are not part of the
training set.

5.2.2 Results on the DeepFashion dataset

We trained the three methods (baseline STL, STL w/ HLS &MTL w/ RNN+VA) on
the DF1 dataset as a benchmark for category and attribute classification. We did not
employ the ground truth bounding boxes offered by DF1 but rather passed its images
through our trained object type detectionmodel and only kept the predicted items that
matched the images’ category level. This decision ensures the generalisability of our
method to other datasets that do not include bounding boxes or mask annotations,
arguably, two costly and time-consuming types of manual annotation. The object
type detector had an 89.2% retention rate meaning that 10.8% of the DF1 was not
retained. After randomly sampling 1,000 samples from DF1 we assessed that 3.5%
of the mismatch images were due to mistakenly annotated instances in the DF1
while 7.3% were due to mistaken predictions by our model. This translates into
approximately 92.7% accuracy for the object type detection model which was not
trained on DF1 data.

After cropping the images around the predicted bounding boxes, an EfficientNet-
B4 architecture is fine-tuned for category and attribute classification on DF1. The
results of each method can be seen in Table 7 compared with all relevant studies.
All three models surpass the state-of-the-art on category classification. Specifically,
“STL w/ HLS” has the highest top-3 accuracy with 93.99% (+0.98%) while “MTL
w/ RNN+VA” has the highest top-5 accuracy with 97.57% (+0.56%).

On attribute classification, our models do not perform as well, being lower than
most previously reported results. This could be an issue resulting directly from our
proposed architecture. However, this seems unlikely given the fact that the same
network outperforms the state-of-the-art on the category classification task and
performs very well on the Mallzee dataset. A more plausible explanation is that we
are using a slightly different evaluation metric. In the original DeepFashion paper,
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Liu et al. (2016) used the “recall rate at top-k” metric and reported a 54.61% top-5
accuracy for the attribute classification task [2]. More recently Liu et al. (2020) in
MMFashion, reported 14.79% top-5 recall with “VGG + Landmark Pooling” and
30.84% top-5 recall with a “RNN + Landmark Pooling” on attribute classification
using the DeepFashion dataset [19]. The employed model and the dataset were the
same as the original publication but the end results were vastly different.We could not
verifywhat is the cause of thismismatch. However, it is possible that slightly different
evaluation metrics were used. The official DeepFashion GitHub page9 directs to the
MMFashion page10 whose evaluation protocol11 uses an altered recall formulation,
one that takes only the top-N (N=50) predictions into account while calculating the
recall at k. Similarly, we could not verify which evaluation metric was used by all
other research teams since their code was not publicly available. In Table 7 we report
the conventional recall@k scores. However, we also calculate the aforementioned
“altered recall rate” (shown in the parenthesis of Table 7) which results in 65.79%
top-3 and 73.57% top-5 by Baseline STL, 66.19% top-3 and 73.73% top-5 by STL
w/ HLS, and 53.01% top-3 and 66.4% top-5 by MTL w/ RNN+VA. Again we can
observe STL w/ HLS improving upon the performance of Baseline STL for attribute
classification. Additionally, if the “altered recall” is indeed the correct evaluation
metric for attribute classification on DF1, STL w/ HLS has surpassed the current
SoTA by 6.36% in terms top-3 recall rate.

Table 7: Benchmarking on DeepFashion for category and attribute classifica-
tion. In parenthesis we report an “altered recall-rate@k” found in the DeepFash-
ion/MMFashion GitHub page11 used for the attribute classification task. (Bold de-
notes the best performance per metric)

Method Category Attributes

Top-3 Top-5 Top-3 Top-5

Chen et al., 2012 [20] 43.73 66.26 27.46 35.37
Huang et al., 2015 [21] 59.48 79.58 42.35 51.95
Liu et al., 2016 [2] 82.58 90.17 45.52 54.61
Corbiere et al., 2017 [7] 86.30 92.80 23.10 30.40
Wang et al., 2018 [8] 90.99 95.78 51.53 60.95
Ye et al., 2019 [9] 90.06 95.04 52.82 62.49
Li et al., 2019 [10] 93.01 97.01 59.83 77.91
Liu et al., 2020 [19] - - - 30.84
Baseline STL 93.71 97.40 34.71 (65.79) 43.90 (73.57)
STL w/ HLS 93.99 97.49 36.20 (66.19) 45.62 (73.73)
MTL w/ RNN + VA 93.72 97.57 26.85 (53.01) 35.22 (66.4)

9 https://liuziwei7.github.io/projects/DeepFashion.html
10 https://github.com/open-mmlab/mmfashion/
11 https://github.com/open-mmlab/mmfashion/blob/150f35454d94a0de7ae40dfdca7193207bd3fc57/
mmfashion/core/evaluation/attr_predict_eval.py/#L100
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Performing an internal comparison, we could see that STL w/ HLS improves
upon Baseline STL on DF1 for both tasks. Especially for attribute classification
there are noticeable improvements of 1.49% in top-3 and 1.72% in top-5 recall;
using the conventional recall formulation. This is in accordance with our initial
hypothesis that HLS can improve image pattern recognition in fashion by capturing
existing hierarchical relationships between object types, categories and attributes;
without requiring further domain expertise. On the other hand, MTL w/ RNN+VA
performs very well only on the category-level task but modestly on the attribute-
level task. We hypothesize that this disparity can be partly attributed to the fact that
the two tasks - while being related to the same fashion images and domain - are
relatively dissimilar. By their nature, the task of identifying categories may require
the extraction of geometrical features and shapes while attributes may require more
fine-grained features related to textures, fabrics and styles of the garments.Moreover,
in MTL, the same convolutional backbone is being optimised for both multi-class
classification with 50 categories and for multi-label classification with 1000 (fairly
noisy) attributes. On top of that, the category task reached its peak performance at 10
training epochs and remained stationary while the attribute task required 40 epochs.
To this point, a further investigation on alternative ways of calculating and combining
the two loss functions (such as weighting) could be insightful for explaining or even
mitigating the aforementioned issues.

Despite the limited performance ofMTL w/ RNN+VA, a noteworthy advantage is
the ability to plot the attention weights on top of an image and interpret the model’s
predictions. Four examples are shown in Figure 3. Figure 3a depicts a “checked
shirt”. During the category classification task the model mostly focuses around the
shirt’s buttons and the neckline area to conclude that the garment is a “shirt”. On the
other hand, while predicting the garment’s attributes, the model broadens its focus
and attends multiple points in order to determine that the garment is “checked”. In
Figure 3b, depicting a “frill dress”, the model gives additional attention to the lower
parts of the dress in order to identify its “frill” attribute. On the other hand, Figure
3c indicates a case where the model performs a correct prediction (“quilted puffer
jacket”) but the attention plot is not particularly meaningful or interpretable. During
the category classification, the model attends more intensely on the shirt under the
jacket and not the jacket itself; while correctly classifying it as a jacket. This is a case
where the model’s prediction is correct but the attention plot is not informative nor
interpretable. Finally, Figure 3d depicts a ‘checked shirt’, and the model correctly
predicts its category (‘shirt’). However, the model ignores the hierarchical label
sharing information at the attribute stage (that the garment category is a ‘shirt’) and
instead predicts a ‘polo’; an incompatible combination since the ‘polo’ attribute only
applies to t-shirts. Had the model exhibited higher attention on the long sleeves of
the garments it should have taken that into consideration. Furthermore, the model
mistakes the ‘checked’ attribute pattern with ‘paisley’; a vastly different type of
visual pattern.
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(a) (b)

(c) (d)

Fig. 3: Examples of attention plots and their predicted labels from the “MTL w/
RNN+VA” model on images that are not part of the training set. The ground truth
labels are reported over the ‘original images’.

6 Conclusions

In this study, we propose a deep learning pipeline that employs a hierarchical label
sharing (HLS) technique. We examine the performance of HLS in two settings 1)
single-task learning with hierarchical label sharing (STL w/ HLS) and 2) multi-
task learning with RNN and visual attention (MTL w/ RNN+VA). Our hierarchical
pipeline follows two-stages. It first performs object type detection, crops the images
around the predicted bounding boxes and then applies category and fine-grained
attribute classification. Evaluation on the DeepFashion benchmark shows that our
method surpasses the current state-of-the-art (SotA) on category classification. Most
notable, “STL w/ HLS” scored 93.99% top-3 accuracy while “MTL w/ RNN+VA”
scored 97.57% top-5 accuracy.

When compared with previous studies, our approach offers the ability to work
with full-scale fashion imagery depicting complete outfits. Also, it does not re-
quire landmark and mask annotations which are costly and time-consuming types of
manual annotation. Furthermore, HLS can learn hierarchical fashion relationships
between attributes/categories/types without requiring manually crafted rules by do-
main experts. Finally, by utilizing theMallzee dataset the models was shown to cope
with footwear, a very significant aspect of the fashion industry, that was completely
missing from popular fashion dataset such as DeepFashion and DeepFashion2.

Regarding the further improvement of our models’ performance, we consider
the introduction of pre-trained human parts detection models in the object type
detection phase, in order to improve the precise localisation of garments in relation
to the human body [22]. Moreover, a hierarchical multi-label loss function could be
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considered for explicitly discovering meaningful hierarchical relationships among
categories and penalising non-possible multi-label combinations [23]. For future
work, we plan on studying how the features extracted from fashion imagery can
facilitate the improvement of trend forecasting and garment recommendations in the
fashion domain.
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