
 

eTryOn - Virtual try-ons of garments enabling novel human fashion 
interactions 

 

 

Project Title: eTryOn - Virtual try-ons of garments enabling novel 
human fashion interactions 

Contract No: 951908 - eTryOn 

Instrument: Innovation Action 

Thematic Priority: H2020 ICT-55-2020 

Start of project: 1 October 2020 

Duration: 24 months 

 

 

Deliverable No: D4.1 

Architecture and integration Protocol 
Due date of 
deliverable: 

31 May 2021 

Actual submission 
date: 

4 June 2021 

Version: 2.3 

Main Authors: Ray Miller (Metail) 

Jim Downing (Metail) 

 

 

 
 

 

Project funded by the European Community under the 
H2020 Programme for Research and Innovation. 

  

 

 

 

  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 2 of 42 

Deliverable title Deliverable Title 

Deliverable number D4.1 

Deliverable version Final 

Contractual date of 
delivery 

31 May 2021 

Actual date of delivery 4 June 2021 

Deliverable filename eTryOn_D4.1_final.docx 

Type of deliverable Report 

Dissemination level PU 

Number of pages 42 

Workpackage WP4 

Task(s) T4.1 

Partner responsible Metail 

Author(s) Jim Downing (Metail), Ray Miller (Metail) 

Editor Elisavet Chatzilari (CERTH) 

Reviewer(s) Tasos Papazoglou Chalikias (CERTH) 

 

 

Abstract The starting point for the architecture and technical 
decisions made in support of the eTryOn Project use cases 
and pilots.  

Keywords Architecture, integration 

 

  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 3 of 42 

Copyright  
  

© Copyright 2020 eTryOn Consortium consisting of:  

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH) 
2. QUANTACORP (QC) 
3. METAIL LIMITED (Metail) 
4. MALLZEE LTD (MLZ) 
5. ODLO INTERNATIONAL AG (ODLO) 

 

This document may not be copied, reproduced, or modified in whole or in part for any purpose without 
written permission from the eTryOn Consortium. In addition to such written permission to copy, 
reproduce, or modify this document in whole or part, an acknowledgement of the authors of the 
document and all applicable portions of the copyright notice must be clearly referenced.  

  

All rights reserved.  

 



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 4 of 42 

Deliverable history   

 

Version Date Reason Revised by 

1.0 2021-04-18 Table of Contents Jim Downing 

2.0 2021-05-18 Initial version 
Ray Miller, Jim 
Downing 

- 2021-05-20 Comments by  
Tasos Papazoglou 
Chalikias 

2.1 2021-05-25 Revised version Jim Downing 

2.2 2021-05-26 ToC rebuilt Jim Downing 

2.3 2021-06-02 Final version Elisavet Chatzilari 

  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 5 of 42 

List of abbreviations and Acronyms 

 

Abbreviation Meaning 

KPI Key Performance Indicator 

DevOps 

A combination of Software Development and IT Operations. 
DevOps is a set of practices that combines software development 
and IT operations. It aims to shorten the systems development life 
cycle and provide continuous delivery with high software quality. 

DSL Domain Specific Language 

API 
Application Programming Interface. In this document it exclusively 
means a network interface.  

AR 
Augmented Reality - the composition of 3D objects into a scene 
viewed through a camera and display that adds virtual objects to 
the scene.  

HTTP (S) 

HyperText Transfer  Protocol (Secure). HTTP is the protocol used 
to transfer data over the web. It is part of the Internet protocol 
suite and defines commands and services used for transmitting 
web data. 

NoSQL 

Database management systems that do not use the relational 
model or offer querying in Structured Query Language (SQL). 
These often offer high throughput and easier updating and 
reading.  

VR Virtual Reality 

ADR Architecture Decision Record 

SDK 
Software Development Kit. In this document this refers to a 
component that can be incorporated into a larger software 
container and runs in-process with it.  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 6 of 42 

Table of Contents 

Contents 
1 Executive summary ................................................................................................................... 9 

2 Architecture Principles, Tools and Approaches ........................................................................ 10 

2.1 Architecture Decision Records .......................................................................................... 10 

2.2 C4 Modelling..................................................................................................................... 10 

2.3 Dev/Ops & Collaboration Platform .................................................................................... 10 

2.4 Living Documentation ....................................................................................................... 10 

2.5 Service-Oriented Architecture & API abstractions ............................................................. 10 

2.6 Cloth Modelling Library ..................................................................................................... 11 

2.7 Application Development Platform, Avoiding Low-value Middleware ................................ 11 

2.8 Isolating Use Cases .......................................................................................................... 11 

2.9 Privacy and Data Protection ............................................................................................. 12 

2.9.1 Data encryption ......................................................................................................... 12 

2.9.2 SAR & Right To Be Forgotten Requests .................................................................... 12 

2.9.3 Consent ..................................................................................................................... 12 

2.9.4 Photographs and body models .................................................................................. 13 

3 Architecture overviews ............................................................................................................. 14 

3.1 System 1 - VR Designer System....................................................................................... 15 

3.1.1 Fit Model Scanatar Creation ...................................................................................... 16 

3.1.2 Collection Configuration ............................................................................................. 17 

3.1.3 Ratings Update .......................................................................................................... 18 

3.2 System 2 - DressMeUp System ........................................................................................ 18 

3.2.1 Body Model Creation ................................................................................................. 19 

3.2.2 Catalogue Update ...................................................................................................... 20 

3.2.3 Browzwear File Upload .............................................................................................. 20 

3.2.4 Video Composition .................................................................................................... 21 

3.3 System 3 - AR try on ......................................................................................................... 22 

3.3.1 Catalogue Sync ......................................................................................................... 22 

3.3.2 Asset Creation ........................................................................................................... 23 

3.3.3 Account & Avatar Creation......................................................................................... 23 

3.3.4 Augmented Try On .................................................................................................... 24 

4 Architecture Decisions ............................................................................................................. 25 

4.1 ADR-0001 Record Architecture Decisions ........................................................................ 25 

4.1.1 Context ...................................................................................................................... 25 

4.1.2 Decision..................................................................................................................... 25 

4.1.3 Consequences........................................................................................................... 25 

4.2 ADR-0002 Use C4 ............................................................................................................ 25 

4.2.1 Context ...................................................................................................................... 25 



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 7 of 42 

4.2.2 4.2.2 Decision ............................................................................................................ 26 

4.2.3 4.2.3 Consequences .................................................................................................. 26 

4.3 4.3 ADR-0003 Use GitLab ................................................................................................ 26 

4.3.1 4.3.1 Context ............................................................................................................. 26 

4.3.2 Decision..................................................................................................................... 27 

4.3.3 Consequences........................................................................................................... 27 

4.4 ADR-0004 Use Hugo ........................................................................................................ 27 

4.4.1 Context ...................................................................................................................... 27 

4.4.2 Decision..................................................................................................................... 27 

4.4.3 4.4.3 Consequences .................................................................................................. 28 

4.5 4.5 ADR-0005 Use APIs ................................................................................................... 28 

4.5.1 4.5.1 Context ............................................................................................................. 28 

4.5.2 4.5.2 Decision ............................................................................................................ 28 

4.5.3 4.5.3 Consequences .................................................................................................. 28 

4.6 ADR-0006 Use an Application Development Platform ...................................................... 29 

4.6.1 Context ...................................................................................................................... 29 

4.6.2 Decision..................................................................................................................... 29 

4.6.3 Consequences........................................................................................................... 29 

4.7 4.7 ADR-0007 Isolation of Use Cases............................................................................... 30 

4.7.1 4.7.1 Context ............................................................................................................. 30 

4.7.2 4.7.2 Decision ............................................................................................................ 30 

4.7.3 4.7.3 Consequences .................................................................................................. 30 

4.8 ADR-0008 Use Obi Cloth for Real-time Cloth Physics ...................................................... 31 

4.8.1 Context ...................................................................................................................... 31 

4.8.2 Requirements per use case ....................................................................................... 31 

4.8.3 Platform comparisons ................................................................................................ 31 

4.8.4 Decision..................................................................................................................... 33 

4.8.5 Consequences........................................................................................................... 33 

4.9 ADR-0009 Platform for Each Application .......................................................................... 33 

4.9.1 Context ...................................................................................................................... 34 

4.9.2 Decision..................................................................................................................... 34 

4.9.3 Consequences........................................................................................................... 34 

4.10 ADR-0010 QuantaCorp SDK ............................................................................................ 34 

4.10.1 Context ...................................................................................................................... 34 

4.10.2 Decision..................................................................................................................... 35 

4.10.3 Consequences........................................................................................................... 35 

4.11 ADR-0011 Mallzee Api ..................................................................................................... 35 

4.11.1 Context ...................................................................................................................... 35 

4.11.2 Decision..................................................................................................................... 36 



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 8 of 42 

4.11.3 Consequences........................................................................................................... 36 

4.12 ADR-0012 Metail Scanatar Creation ................................................................................. 36 

4.12.1 Context ...................................................................................................................... 36 

4.12.2 Decision..................................................................................................................... 37 

4.12.3 Consequences........................................................................................................... 37 

4.13 ADR-0013 Metail VStitcher Headless Service ................................................................... 38 

4.13.1 Context ...................................................................................................................... 38 

4.13.2 Decision..................................................................................................................... 38 

4.13.3 Consequences........................................................................................................... 38 

4.14 ADR-0014 Scanatar Creation ........................................................................................... 38 

4.14.1 Context ...................................................................................................................... 38 

4.14.2 Decision..................................................................................................................... 39 

4.14.3 Consequences........................................................................................................... 39 

4.15 ADR-0015 Token Service for QuantaCorp API ................................................................. 40 

4.15.1 Context ...................................................................................................................... 40 

4.15.2 Decision..................................................................................................................... 40 

4.15.3 Consequences........................................................................................................... 40 

4.16 ADR-0016 Authentication and Authorization ..................................................................... 40 

4.16.1 Context ...................................................................................................................... 40 

4.16.2 Decision..................................................................................................................... 41 

4.16.3 Consequences........................................................................................................... 41 

4.17 ADR-0017 Platform for Each Application revision ............................................................. 42 

4.17.1 Context ...................................................................................................................... 42 

4.17.2 Decision..................................................................................................................... 42 

4.17.3 Consequences........................................................................................................... 42 

 

 



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 9 of 42 

1 Executive summary 

The development of architecture in eTryOn is an iterative, ongoing process that aims to promote 
communication and reduce technical risk on the project. We particularly focus on timely decisions of 
technology choices and approaches, and on clarifying interfaces between components (especially 
those between consortium partners). 

Section 2 describes the general principles, tools, patterns and practices that apply across all the 
systems being developed in the eTryOn project. Section 3 goes into more depth on each of the 3 
systems describing both the coordinating components that each system will consist of, as well as 
looking at key interactions, through architecture diagrams generated from the architectural model for 
eTryOn. Both sections highlight where key decisions have been made, and these decisions are 
described in full in section 4.  

Most of the contents of this document are continuously updated and maintained through the project 
technical documentation website at https://etryon.gitlab.io/techdocs/ .  

https://etryon.gitlab.io/techdocs/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 10 of 42 

2 Architecture Principles, Tools and Approaches 

Our aim is to create an architecture with the primary goal to help the eTryOn project development to 
progress smoothly and to support the use case pilots towards the end of the project, rather than to 
anticipate the needs of a commercial implementation after the project. It follows that the initial 
decisions made around architecture focused on how architectural decisions would be made and 
communicated between consortium partners. We chose to leverage serverless cloud technologies as 
we have found them to be an excellent way to build systems that scale down as well as up, allowing 
speed, flexibility and low development overheads during system development without significant costs 
scaling up.  

2.1 Architecture Decision Records 

We have found Architecture Decision Records (ADRs) to be a useful discipline, especially in 
distributed teams. By recording the context and conclusion for each architecture decision into version 
control we seek to clarify thoughts when making the decision, and make it possible for those who 
come to the architecture later to understand it better and give them a better understanding of the 
ramifications of making changes. More details can be found in Section 4.1.   

2.2 C4 Modelling 

Diagrams are crucial in the communication of software architectural models. In eTryOn, rather than 
relying on ad-hoc diagrams from graphics tools we chose to adopt the C4 model to encode our 
architectural ideas and generate diagrams from the model. Following this model gives our diagrams 
some reasonable semantic fidelity - it will make it easier to ensure a 1-1 correspondence between the 
documentation and the running systems as implementation progresses. We chose to use the C4 
Domain Specific Language (DSL), which means our architecture model can be usefully handled in 
version control systems, allowing variations to be modelled on branches, and for parallel development 
to be merged. More details can be found in Section 4.2.  

2.3 Dev/Ops & Collaboration Platform 

To simplify collaboration over shared project information and source code, and to provide a 
Continuous Integration / Continuous Deployment (CI/CD) technology for the project, we decided to 
use a code development platform based around the git Distributed Version Control System (DVCS). 
We favoured Gitlab; more can be found in Section 4.3.  

2.4 Living Documentation  

Although this document represents the state of the architectural design at a particular project 
milestone, from the start we regard the architecture as an evolving, iterative process. As such, our 
decisions, diagrams and other use case documentation are continuously made available to 
consortium partners through a website. We prefer website platforms that are built with the same 
primitives as the rest of the code and architecture artefacts: Version controlled files. As such, we 
chose a static website generator, preferring Hugo for speed. The Hugo site is hosted in the project 
GitLab organisation, and Gitlab’s CI/CD facilities are used to build and republish the site on every 
commit. In addition, branches are published separately, giving us the ability to easily create draft / 
staging versions of the website for feedback from project partners before merging the changes into 
the main site. See also Section 4.4.  

2.5 Service-Oriented Architecture & API abstractions 

The project applications will use consortium partners’ pre-existing services and software, or 
customizations of them. A service-oriented architecture makes sense as a good basis for decoupling 
work package contributions, and for separation of concerns in the final software both to allow partners 



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 11 of 42 

to continue to develop service components beyond the project, and to minimize licensing issues in 
substituting parts if that becomes necessary. They are also the right places to create system interface 
abstractions. We decided, therefore, to develop these components behind service APIs, and allow 
each partner to develop the implementations as they wished behind the service APIs (see Section 
4.5). 

2.6 Cloth Modelling Library 

Creating digital garment models that run at real-time in the physics engines supported by VR 
applications was a crucial area of investigation, and one that we knew we would need to optimise for, 
and design architecture around. The best balance of quality of cloth representation and speed 
currently comes from models that are able to blend tighter areas of the garment to modelled through 
skinning, and others to have draping physics either through particle simulation or finite elements.  We 
considered and evaluated a number of options before settling on ObiCloth running in the Unity 
platform (more details can be found in Section 4.8 and deliverable D5.1).  

2.7 Application Development Platform, Avoiding Low-value Middleware 

In recent years, the availability of rich, high-level services in public cloud offerings like Amazon Web 
Services and Google Cloud Platform has allowed developers to greatly increase productivity by 
leveraging general purpose services for common system components like databases, web application 
servers, messaging queues and so on. This has led to the development of SDKs and tooling that 
make it easier to compose those components into client applications. For the reasons described in 
Section 4.6), we chose Google’s Firebase platform as a foundation for the development of 
applications in our use cases.  

Historically, it has often been the practice to partner every application front end client with a 
middleware layer. The function of this middleware layer is often to mediate access to other network 
services and to provide a layer of abstraction over data structures. We have chosen not to create 
middleware by default, only creating middle tier components when there is a clear business logic 
requirement for them. This is partly enabled by the facilities in Firebase to connect front end 
applications directly to the general services it offers. It has the great advantage that it avoids 
middleware from being a blocking dependency in project development. For example, if the developers 
of the front-end application need to change a data structure in order to progress, they can do so by 
changing the schema in the data store and their own application; there is no additional dependency 
for a middle tier modification. Issues of back compatibility are also minimised during project 
development. This flexibility, in turn, allows a much more iterative style of development.  

2.8 Isolating Use Cases 

As we design and develop the system components directly related to the applications and use cases 
in eTryOn, we have the choice of whether to develop them as one large system that can support all 
three use cases, or as three platforms, each supporting a single use case.  

 Pro Con 

Single 
System 

● Shared use of fixed-cost 
components  

● Provisioning, deployment and 
configuration can feasibly be 
done manually 

● System would need to be 
fragmented and refactored 
heavily for tech transfer to any 
one audience post-project.  

● CI/CD can become 
complex 

● Provisioning, 
deployment and 
configuration can 
feasibly be done 
manually (and is 
therefore error-prone) 

● Difficult to reason about 



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 12 of 42 

usage patterns and data 
flows  

Multiple 
Systems 

● CI/CD simpler for each system 
● Automated provisioning, 

deployment and configuration is 
more robust.  

● Systems can be independently 
supported for each pilot.  

● Systems can be transferred 
from the project independently. 

● Can reason about usage 
patterns and data flows in the 
scope of a single use case.   

● Any fixed costs are 
duplicated 

● Provisioning, 
deployment and 
configuration must be 
automated 

 

We favour the multiple systems route (Section 4.7), having found good mitigations for the difficulties:  

1. Favouring “serverless” style higher level services in cloud offerings. These will typically involve 
relying on the cloud provider to provision compute for your application on-demand, with the 
advantage that they both scale down and up; they cost very little when lightly loaded, but also 
scale out elastically to very high capacity, supported by public cloud service offering them.  

2. Using configuration management software for provisioning, configuration and deployment. We 
usually use Terraform for this, but have not yet selected a configuration management solution 
for the eTryOn applications.  

Because of this decision, the architecture models shown in Section 3 can be accurately displayed 
per-use case. 

2.9 Privacy and Data Protection 

Our approach to Data Privacy and Protection is in line with EU General Data Protection Regulation 
(GDPR). This section highlights some particular features of the system with respect to data privacy.  

2.9.1 Data encryption  

By basing our applications on Google Cloud Platform services we make use of their data encryption 
at rest, and we maintain encryption during transit by using HTTPS services for any transfer of personal 
data. 

2.9.2 SAR & Right To Be Forgotten Requests 

In System 3 where end user activity data (analytics) is stored in order to give recommendations, we 
will ensure these records are stored in a logical container per customer, making Subject Access 
Requests and Deletion requests straightforward to respond to.  

2.9.3 Consent 

In System 1 all the participants are in employment contracts that cover storage of personal data, 
which is our basis for storing relevant personal data.  

In Systems 2 and 3, we will obtain an appropriate consent from the user, and store the details of the 
consent collected in the Data Store.  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 13 of 42 

2.9.4 Photographs and body models 

We regard user photographs that are used to be particularly sensitive. Beyond the scope of eTryOn, 
we recognise that the body model prediction from image would ideally be performed on device for 
privacy reasons. Until this is possible, we have been careful to design a system that i) avoids storing 
photographs on more systems than entirely necessary, ii) minimises the number of data processors 
of this data (QuantaCorp only) and iii) gives QuantaCorp a clear event (when the results write is 
successful) that signals that the photographs are no longer needed and can be deleted. An example 
of this flow can be seen in Section 1.1.1).  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 14 of 42 

3 Architecture overviews 

This section describes the architectural designs to date, including the key service components needed 
for each use case. Sequence and interaction diagrams are provided to explain key interactions 
between these components in meeting use case scenarios. Some service components appear in 
more than one system. Where these are eTryOn components, they will be independently deployed, 
although they will have a common source codebase (see also Section 4.7). Where these are eTryOn 
partner components called through an API, it is the partner’s choice whether to deploy per use case 
(see also Section 4.5). This legend describes the colour coding and shape keys used through this 
section.  

In all cases designed so far, we intend to use Google Cloud Platform (GCP) Firestore as a database. 
This is a document-based NoSQL database which does not enforce a schema over the data it stores, 
leaving that to the calling clients. This is ideal for our usage as it allows minimal blocking 
communications as iterative development happens (see also Section 4.6). Firestore also supports a 
pub/sub event system in which clients can subscribe to changes to parts of the data model, and we 
leverage this in our architecture, using these changes to trigger Cloud Functions that call external 
services.  

Our Asset Stores are all based on Google Cloud Storage. As well as being scalable, resilient storage 
for binary data, Cloud Storage has two features that we leverage in our architecture. Firstly, it also 
has a pub/sub event system built in, which we use to trigger the next steps in sequential processes. 
This has scalability and system reliability benefits when processing steps are long-running, e.g. writing 
large files or calling computationally expensive external processes. Secondly, allows security through 
cryptographic signing of URLs to access existing data files and also to write to. We make extensive 
use of this when calling to external systems, any parameters to services that are at all large will be 
passed as pre-signed URLs, and external services write results directly to Cloud Storage through 
another presigned URL (rather like an “Out parameter” in C#) rather than attempting to send large 
HTTP requests / responses.  

 



3.1 System 1 - VR Designer System 

The VR Designer System contains 3 front-end applications with a number of supporting service 
elements. The Model Body Capture app is a mobile web application used by the Designer to create 
avatars for the brand’s fit model. These appear in the Designer Config App (a web application), which 
is used to manage these avatars and to create collections of digital garments to show to the Product 
Manager, who will experience them through the immersive Virtual Showroom App.  We plan to show 
garments both as view-only animations created by physics-based simulation in VStitcher (see Section 
4.13) and as interactive garments. The choice of technology for all the interactive garment models in 
eTryOn is summarised in Section 4.8.  

The choice of technology and application format for the user-facing applications is covered in Sections 
4.6 and 4.9. 

  



3.1.1 Fit Model Scanatar Creation 

Particularly of note in this sequence diagram is the use of Cloud Storage update events to orchestrate 
processes where network transfer and processing times are considerable. It also uses the pattern of 
using pre-signed URLs for passing large file parameters to services, and as out parameters to write 
results to, as described in Section 4.12.  

The body model creation is specifically implemented by a QuantaCorp-developed React component 
that acts as a client to their scanning service API, giving the user appropriate guidance and feedback 
to collect good images that will deliver an accurate scan result. More in Sections 4.10, 4.14 and 4.15.  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 17 of 42 

3.1.2 Collection Configuration 

 



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 18 of 42 

3.1.3 Ratings Update 

 

3.2 System 2 - DressMeUp System 

Because of the importance of the garment animation and composition to this system, we have 
exposed implementation behind the Composition Service API in this diagram and subsequent 
sequence diagrams. Also of note is the dependency on a live product catalogue data feed from the 
brand’s web store. Discussions with Odlo indicate that they have flexibility in the format of this feed, 
and our preference is for HTTPS/JSON.  

Again, the system has two key user types: One role managing the data for the application, as well as 
the end user (an influencer) in the second role. The composition process involves a sequence of 
operations including pose estimation / extraction from the user’s video, animation of the user’s body 
model with the resulting animation, garment simulation on that body animation to produce a garment 
animation. There are a number of technology choices in how this video / image composition will be 
done, depending in part on the efficacy of the parts of the process. This is an open area of 
investigation in Work Package 2.  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 19 of 42 

 

3.2.1 Body Model Creation 

 

This use case shows another use of the QuantaCorp React SDK.  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 20 of 42 

This sequence also illustrates the detail of the token mechanism used to authenticate the client app 
with the service layer. This will be a common pattern with most of the app-initiated sequences.  

3.2.2 Catalogue Update 

 

This event-driven flow leverages GCP features - the catalogue update is triggered by a cron-like 
scheduling service (Cloud Scheduler), and the calls to the Mallzee ratings prediction service is 
triggered in turn by a pub/sub event from the data store as the catalogue records are updated.  

3.2.3 Browzwear File Upload 

 

Because the current intention is to create videos by automating animations using Browzwear software 
directly, no pre-processing of garment data is needed. If that solution route changes, this flow could 
become more complex.  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 21 of 42 

3.2.4 Video Composition 

 

  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 22 of 42 

3.3 System 3 - AR try on 

 

3.3.1 Catalogue Sync 

 



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 23 of 42 

3.3.2 Asset Creation 

 

Because there is very little admin functionality needed here, and only by eTryOn project staff, we will 
avoid developing a thin admin Ux and instead use a Command Line Interface (CLI), as described in 
Section 4.16. Developing this admin functionality / enterprise integration will be part of an exploitation 
plan. 

3.3.3 Account & Avatar Creation 

 

In this flow, the QuantaCorp SDK is one developed specifically for iOS. It performs the same function 
as the React SDK - guiding the user through image collection for the mobile scan, and interacting with 
the QuantaCorp API.  



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 24 of 42 

3.3.4 Augmented Try On 

 



 

4 Architecture Decisions 

4.1 ADR-0001 Record Architecture Decisions 

Date 2020-11-03 

Status Accepted 

4.1.1 Context 

We need to record the architectural decisions made on this project. 

4.1.2 Decision 

We will use Architecture Decision Records, as described by Michael Nygard. 

4.1.3 Consequences 

See Michael Nygard’s article, linked above. For a lightweight ADR toolset, see Nat Pryce’s 
adr-tools. 

4.2 ADR-0002 Use C4 

Date 2021-05-11 

Status Accepted 

4.2.1 Context 

The eTryOn project will consist of a number of user-facing applications, server-side 
components for data storage, processing, and retrieval, and interactions with third-party 
APIs and supporting systems for authentication and authorization. It will be important to 
document these systems and their interactions to align everyone’s understanding of what 
we plan to build and explain how the system as a whole will work. 

The software architect Simon Brown created a structured model for visualizing software 
architecture, the C4 model, which decomposes a system into containers and components 
and shows their relationships with each other and with their users. It allows the system to 
be viewed in a hierarchy: 

● Context diagrams (level 1): they show the system in scope and its relationship with 
users and other systems; 

● Container diagrams (level 2): they decompose a system into interrelated containers. 
A container represents an application or a data store; 

● Component diagrams (level 3): they decompose containers into interrelated 
components, and relate the components to other containers or other systems; 

http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions
https://github.com/npryce/adr-tools
https://c4model.com/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 26 of 42 

● Code diagrams (level 4): they provide additional details about the design of the 
architectural elements that can be mapped to code. C4 model relies at this level on 
existing notations such as Unified Modelling Language (UML) or Entity Relation 
Diagrams (ERD). 

(Reference: C4 Model). 

He also provides the Structurizr tooling that allows you to express the architecture in a text-
based DSL that can then be rendered at any of these levels in a number of different 
formats. 

4.2.2 Decision 

We will use the C4 Model to describe our system architecture. 

We will use the Sturcturizr DSL to express our architecture diagrams. 

We will use the Structurizr CLI and PlantUML to generate diagrams from the DSL. 

4.2.3 Consequences 

Using a text-based DSL for the diagrams allows them to be kept under version control and 
facilitates collaboration. 

The simple DSL also allows for rapid iteration as our understanding of the requirements 
evolves, making it easier to keep the architecture diagrams up to date. 

Command-line tooling allows us to generate images from the DSL in a script or CI/CD 
pipeline. These images are then easily included in Markdown pages and other documents. 

4.3 ADR-0003 Use GitLab 

Date 2021-05-11 

Status Accepted 

4.3.1 Context 

We should keep source code and documentation for the eTryOn project under version 
control. Most developers these days are familiar with git, a free and open source distributed 
version control system designed to handle everything from small to very large projects with 
speed and efficiency. 

Although git is a distributed system, most projects use a centralised hub to host their 
repositories and facilitate collaboration. 

In addition to repository hosting, we will need a platform for building and testing any 
software we develop. Running tests and builds in a controlled environment (usually a 
Docker container) ensures reproducibility, and avoids “works on my machine” syndrome. 

https://en.wikipedia.org/wiki/C4_model
https://structurizr.org/
https://github.com/structurizr/cli
https://plantuml.com/
https://git-scm.com/
https://www.docker.com/resources/what-container


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 27 of 42 

Two popular platforms for hosting git repositories are GitHub and GitLab; both offer free 
plans for small teams and provide facilities for continuous integration (automated testing 
and building) and collaboration (issue tracking, merge requests and review). 

4.3.2 Decision 

We will use GitLab to host our git repositories. 

We will use GitLab CI to build and test our software. 

4.3.3 Consequences 

We will have a central place to host repositories where everyone on the team can find them. 

We can automate building and testing of software in Docker containers (or, if necessary, 
custom runners). 

We can use GitLab to manage and review merge requests, facilitating collaboration on 
shared projects. 

We also have the option of using GitLab’s DevOps tooling to help with deploying software 
and cloud infrastructure. 

Although GitLab’s basic plan is free, it comes with limited storage and CI/CD minutes. If we 
exceed these quotas we may need to purchase additional resources. 

4.4 ADR-0004 Use Hugo 

Date 2021-05-11 

Status Accepted 

4.4.1 Context 

We need to publish technical documentation for the project as it progresses (for example, 
architecture diagrams, use case details, and architecture decision records). We should 
make it as easy as possible for developers to write documentation and keep it up to date. 

In ADR-0003 we describe how we will use GitLab to host source code repositories. If we 
choose a text-based format for our documentation, this can also be maintained in a git 
repository. Markdown is one such format: it is a simple and easily-readable plain text 
format that can be transformed to structured HTML. 

Hugo is a popular static site generator that uses templates to transform a collection of 
Markdown files, images, and other media into a tree of static files that can be served by any 
web server. 

4.4.2 Decision 

https://github.com/
https://gitlab.com/
http://localhost:1313/techdocs/adr/0003-use-gitlab/
https://daringfireball.net/projects/markdown/
https://gohugo.io/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 28 of 42 

We will use the Hugo static site generator. 

We will host technical documentation on GitLab Pages. 

We will configure a GitLab CI pipeline to regenerate the site and publish changes when they 
are pushed to the main branch. 

We will configure a GitLab CI pipeline to generate a test version of the site for each merge 
request, to facilitate review. 

4.4.3 Consequences 

Maintaining documentation in a plain text format in a git repository makes it easy for 
developers to write and update using familiar tools. 

Changes can be made to the live site by making a merge request against the main branch 
and merging as soon as they have been reviewed. 

Collaborators can run hugo locally to test changes before pushing to the shared repository. 

4.5 ADR-0005 Use APIs 

Date 2021-05-11 

Status Accepted 

4.5.1 Context 

Some functionality for the eTryOn project will be provided by commercial companies in the 
consortium (QuantaCorp, Mallzee, and Metail). These companies will not in general want to 
make details of their implementations public, but instead present a “black box” interface. 

4.5.2 Decision 

We will access services from partner companies through HTTP-based APIs. 

4.5.3 Consequences 

We need to ensure these third-party APIs are documented so they can be consumed by 
eTryOn applications. 

Partner companies do not need to disclose implementation details. 

The systems behind these APIs can be deployed and updated independently of eTryOn 
project resources, so long as API-compatibility is maintained. 

Control of these services remains in the hands of each partner company. Note that this 
implies some risk to the project as, by definition, these services are not under the control of 
the project. 

https://gohugo.io/
https://docs.gitlab.com/ee/user/project/pages/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 29 of 42 

4.6 ADR-0006 Use an Application Development Platform 

Date 2021-02-09 

Status Accepted 

4.6.1 Context 

Mobile and web application development are increasingly achieved by using high level 
services provided by cloud service providers like Google Cloud Platform (GCP) or Amazon 
Web Services (AWS). This has led to the development of SDKs and tooling that make it 
easier to compose these services into working applications through simple provisioning 
and client-side support libraries. Essentially they provide a path of least resistance for many 
concerns in application development for functions from object storage to application 
deployment, analytics to authentication. 

The two application development platforms we considered are AWS Amplify and Google 
Firebase. Both of these make application development easier and are backed by rich 
service offerings in their respective cloud platforms. 

Unity game engine will be the main development platform for the eTryOn project so we 
created two minimal Unity applications using the aforementioned toolkits to compare the 
two solutions in terms of ease of use, support, and capabilities. The demo applications use 
simple operations, namely an authentication process and communication with cloud 
storage for upload and download operations. 

● Firebase was easy to set up, and has an up-to-date supported SDK for Unity. 
● The aws.net SDK has support for Unity but requires a tedious and error-prone set-up 

process. 
● The Firebase platform is easier to use with a much shorter learning curve when it 

comes to typical backend services such as authentication, analytics, cloud storage 
and databases. 

● The AWS SDK offers more functionality, which at the moment do not seem to be of 
any particular use for our case. 

● There are more resources (such as documentation and community guides) available 
for the Firebase than for Amplify. 

Note: Amazon’s Unity mobile SDK has not been mentioned so far since it has not been 
updated for 5 years and is now considered deprecated. The suggested Unity SDK from 
Amazon is the aws.net SDK considered above. 

4.6.2 Decision 

We will use Firebase for the eTryOn project. 

4.6.3 Consequences 

The documentation and community resources for Firebase will allow developers to get up 
and running quickly. 

https://aws.amazon.com/amplify/
https://firebase.google.com/
https://firebase.google.com/
https://unity.com/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 30 of 42 

We will be able to use up-to-date and supported SDKs to consume cloud services in our 
Unity and Javascript applications. 

The tooling and documentation available for Firebase will free up developers to focus on 
core facets of the applications. 

Use of Firebase implies that we will use GCP-backed services for authentication (Firebase 
Auth), object storage (Cloud Storage), and NoSQL database (Cloud Firestore). 

Consuming cloud services directly (via the provided SDK) means we do not need to write 
dedicated APIs for simple things like object and metadata storage. 

4.7 ADR-0007 Isolation of Use Cases 

Date 2021-05-11 

Status Accepted 

4.7.1 Context 

The project will build applications and deploy infrastructure for three different use cases: 

● UC-1: VR Designer 
● UC-2: Dress Me Up App 

● UC-3: Magic Mirror App 

We would like to be free to evolve these applications independently, allowing development 
to proceed in parallel and enabling different routes to commercialization. 

Services will be deployed to Google Cloud Platform (see ADR-0006) and are charged by 
usage (e.g. per API call). This makes it no more expensive to give each use case its own 
Firebase project and deploy resources independently for each project. During development, 
this can be done using the Firebase CLI but for a more controlled production environment 
we might prefer to use something like Terraform to define infrastructure as code. 

4.7.2 Decision 

We will isolate the infrastructure and deployment of resources for each use case. 

4.7.3 Consequences 

Applications can be developed independently, in parallel. 

Applications can be deployed independently of each other. 

Applications may consume the same third-party APIs (see ADR-0005). 

It will be easier to write authorization rules for cloud resources. 

https://firebase.google.com/docs/auth
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/storage
https://firebase.google.com/docs/firestore
http://localhost:1313/techdocs/adr/0006-use-an-app-dev-platform/
https://firebase.google.com/docs/cli
https://www.terraform.io/
http://localhost:1313/techdocs/adr/0005-use-apis/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 31 of 42 

4.8 ADR-0008 Use Obi Cloth for Real-time Cloth Physics 

Date 2021-02-19 

Status Accepted 

4.8.1 Context 

The main requirements considered for this decision are: accuracy, photorealism, and 
interactivity. There is always going to be a tradeoff between interactivity and the other two. 

4.8.2 Requirements per use case 

Overview of the different requirements depending on the use case: 

● (UC1) Designer app. For VR, interactive speeds are, so a game engine model works 
well. However, the domain also requires accuracy. If we go with a series of fixed 
animations and poses, we can store the 3D animations of the accurate garment 
simulation from VStitcher in Alembic format (support added to VStitcher in version 
2021.1). For increased photorealism, we could have the option to ray-trace fixed 
camera angles, and even produce EcoShots imagery for those. 

● (UC2) DressMeUp app. The most important requirement is Photorealism because 
the final image must be worth sharing. We aren’t constrained by interaction speed. 
The simulation and rendering can happen offline. The cloth simulation can be done 
in VStitcher, and the rendering can be ray-traced with V-Ray. The final render can be 
composed with the user’s photograph using Metail’s EcoShot, which should give the 
most photorealistic look. 

● (UC3) Magic Mirror app. Interactivity is key, but we want to raise accuracy and 
photorealism as much as we can. Without the accuracy and photorealism 
requirements, we could target a platform like Snapchat’s Lens Studio, that provides 
AR body tracking. 

This ADR focuses in UC3, although the decision affects UC1 as well. 

4.8.3 Platform comparisons 

Game engines offer what we need in terms of interactivity. In terms of photorealism, most 
engines have comparable results. In terms of accuracy of the cloth simulation, results 
differ. Although most engines use NvCloth under the hood, the capabilities can be quite 
different. Here is a summary of the findings. 

4.8.3.1 Lens Studio by Snapchat 

Although Lens Studio does not offer any cloth simulation at the moment, it offers 3D body 
tracking out of the box. We can pre-simulate garments in VStitcher in some neutral pose 
and body shape, and then rig those garments. The skeleton in the rig needs to match the 
skeleton of Lens Studio. The garments will scale anisotropically based on the bone 
positions. 

https://lensstudio.snapchat.com/
https://lensstudio.snapchat.com/templates/object/3d-body-tracking/?utm_source=lensstudio


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 32 of 42 

4.8.3.2 Unity Cloth 

Unity is the strongest candidate for its ease-of-use, multiplatform support, and support for 
AR and VR. However, the in-built cloth simulation is mostly oriented to environment assets. 
See Getting Started with Cloth physics. For dressing up a character, we have different 
options: 

● A fully-skinned garment, like in the Snapchat approach. See How to make clothes 
animate along a character. 

● Have a mixture of skinned and unskinned meshes. See How to poncho as an 
example. The challenge of this approach is having colliders that represent the body 
accurately. For speed constraints, mesh colliders can’t be used in cloth simulation, 
so we need to approximate the geometry with capsules and spheres. 

● For cloth pieces, you can paint the vertices of the cloth mesh to tell the engine how 
much you want it to be affected by physics, where a value of 0 keeps the vertex in 
place. 

● Use Spring Joints, which join two rigid bodies together as if they were connected by 
a spring. Check Spring bone vs Unith cloth. 

4.8.3.3 Magica Cloth 

This is a plugin for Unity that provides a faster solver and it integrates the components 
mentioned above in a single framework. That is, you can have a garment file that combines 
skinned geometry (e.g. pre-simulated shirt torso), with unskinned pieces for pure cloth 
simulation (e.g. a skirt), and spring bones. 

However, it doesn’t seem to add anything that can’t already be done with Unity. 

4.8.3.4 Amazon Lumberyard 

Amazon Lumberyard has a few extra things useful for cloth simulation: 

● Cloth simulation can be applied to skinned meshes as well, so we can have a hybrid 
model. Similar to Unity’s weight painting, you paint the weights of the motion 
constraints to define how far away a cloth vertex can move. In this case, how far 
from its position after skinning, so the vertex is also affected by skinning. The 
weights are normalised between 0 and 1, and then there’s a maximum distance 
value per cloth piece, defined in metres. 

● The weights are stored as color channels in the FBX file, which it’s something we 
may want to consider if we want to export a single file. 

● There is also a backstop value which is a cheap substitute for colliders. Instead of 
having colliders, we define how much the vertex can move in the normal direction of 
the mesh (a negative value for the vertex of a sleeve would allow it to penetrate the 
arm). 

● Skinning in Lumberyard uses dual quaternion by default, which it’s useful to avoid 
bulging and candy-wrapper artefacts in skinned meshes. It is supported in mobile as 
well. Read Introduction to skinning and 3D animation. 

● It automatically automatically stitches and creates a proxy geometry for simulation 
on garment import. The Level-of-Detail of the proxy geometry can be set as well. For 

https://unity.com/
https://www.youtube.com/watch?v=Nc_ZMgEFj-A
https://forum.unity.com/threads/tutorial-how-to-make-clothes-animate-along-with-character.475253/
https://forum.unity.com/threads/tutorial-how-to-make-clothes-animate-along-with-character.475253/
https://www.polygon-treehouse.com/blog/2017/8/4/howtoponcho
https://docs.unity3d.com/Manual/class-SpringJoint.html
https://www.youtube.com/watch?v=P6qT2PONP1g
https://magicasoft.jp/
https://aws.amazon.com/lumberyard/
https://docs.aws.amazon.com/lumberyard/latest/userguide/nvidia-cloth-constraints.html
https://docs.aws.amazon.com/lumberyard/latest/userguide/nvidia-cloth-constraints.html
https://tech.metail.com/introduction-to-skinning-and-3d-animation/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 33 of 42 

rendering, the proxy geometry is replaced by the original geometry, so you can have 
multiple unstitched materials and a higher polygon count for photorealism. 

Lumberyard does not support spring joints, but those are probably irrelevant. Spring joints 
are a cheap way to make bouncy skirts when cloth simulation is not avaible, or it’s unstable. 

The main drawbacks for using Lumberyard are the lack of official AR support, the difficulty 
of building for multiple platforms (all major mobile and desktop platforms are supported, 
but the setup is not as straightforward as Unity), and build times. 

4.8.3.5 Obi Cloth 

Obi Cloth is a Unity plugin that adds support for the things mentioned above in the 
Lumberyard section, mainly support for skinned meshes, and cloth proxies. The motion 
constraints described earlier are called skin constraints. 

The only disadvantage with respect to Lumberyard is that the skinning depends on Unity 
skinning, and Unity does not support dual-quaternions skinning. 

However, we gain all the advantages of using Unity: fast development cycles, and good 
support for AR and VR. 

4.8.4 Decision 

We will use Unity for UC1 and UC3. For UC3 we will use Obi Cloth, which enables Unity with 
all the advantages seen in other engines like Amazon Lumberyard. 

For UC1, we can use the same engine, but we also have the option of using Alembic 3D 
animation playback for increased accuracy, at the cost of some interactivity (we can still 
move freely inside the VR world and pause the animations at any point to inspect the 
garment). 

We will also build a teaser app of UC3 using Lens Studio. This will use the same garment 
creation pipeline, but with a special skeleton for Lens Studio. It won’t require us to export 
any physics properties, so it can be created earlier. 

4.8.5 Consequences 

Garment data needs to be prepared for Obi Cloth. In particular, we need to check the 
following: 

● Do we need to pre-stitch garments beforehand, or can Obi do all the stitching? 

● How do we provide the skin constraints weights? 

● How do we convert other physics properties from VStitcher to Obi? 

4.9 ADR-0009 Platform for Each Application 

Date 2021-02-24 

http://obi.virtualmethodstudio.com/
http://obi.virtualmethodstudio.com/tutorials/skinconstraints.html


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 34 of 42 

Status Accepted 

Superseded by ADR-0017 Platform for Each Application revision 

4.9.1 Context 

The applications that will be developed are: 

1. VR Designer: Desktop 

2. Dress Me Up: Mobile 

3. Magic Mirror: Mobile 

4. VR Designer Backoffice: Web 

4.9.2 Decision 

The following platforms will be used to develop the applications: 

1. VR Designer: Unity 

2. Dress Me Up: Unity 

3. Magic Mirror: Unity 

4. VR Designer Backoffice: JavaScript (React.JS) 

4.9.3 Consequences 

Unity has support for building mobile UIs and can export applications for all major mobile 
platforms. 

Using Unity to develop both the desktop and cross-platform mobile applications means 
there is less effort in learning additional platforms. 

4.10 ADR-0010 QuantaCorp SDK 

Date 2021-03-09 

Status Accepted 

4.10.1 Context 

The eTryOn project will be developing multiple applications that require an avatar to work or 
to enrich the user experience. The creation of this avatar starts with the capture of two 
images. Those two images are sent as input to the QuantaCorp pipeline. After processing, 
the output of that pipeline is a 3D model. 

QuantaCorp’s current technology portfolio consists of an API, a web portal for B2B 
customers, and a mobile app for B2B customers on iOS and iPadOS. 

Given that eTryOn is customer focused, we need a solution that will meet customer 
expectations while keeping the impact on QuantaCorp’s architecture to a minimum. 

http://localhost:1313/techdocs/adr/0017-platform-for-each-application-revision/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 35 of 42 

To reach a broad public, we need to expand to other platforms like the web and Android. 
We should avoid having to make the user open a separate app to capture the required 
photos. Having to switch apps can have a negative effect on the overall user experience. 
Because there is no direct communication channel as there is in a B2B environment, 
guidance during a scan becomes very important. The user will also expect the scan 
interface to work in the same fashion across platforms. If this experience cannot be 
guaranteed to be similar, guidance during a scan becomes a must. 

Developers should be provided with libraries that facilitate the consumption of the 
QuantaCorp API, and allow them to integrate QuantaCorp’s pipeline in a loosely coupled 
way. 

4.10.2 Decision 

We will create an SDK for Android, iOS and web that will consume the QuantaCorp API and 
will include a scan component to facilitate photo capture. 

4.10.3 Consequences 

By creating an SDK for the various eTryOn apps, scanning functionality will be implemented 
in the apps themselves. This way we avoid having to force the user to use a separate app. 

The SDK will be implemented in Unity (cf ADR-0006) which could pose a small development 
challenge. 

We reduce the complexity of the project’s architecture by avoiding the integration of yet 
another application, and yet another system. 

4.11 ADR-0011 Mallzee Api 

Date 2021-05-11 

Status Proposed 

4.11.1 Context 

As part of the eTryOn project it requires that clothing products should be evaluated for 
product market fit against target demographics and provide recommendations of other 
products based on a given product. 

Mallzee has a datapool of consumer options again 4 million+ products and has experience 
in attempting to predict future product performance by using consumer data captured via 
the Mallzee shopping app. 

Mallzee is looking to provide access to these insights so that other companies can benifit 
from the data and models produced. This in turn allows companies to make smarter 
decisions about the types of products they want to produce by using the vast consumer 
data available via the Mallzee apps. 

http://localhost:1313/techdocs/adr/0006-use-an-app-dev-platform/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 36 of 42 

4.11.2 Decision 

Mallzee will produce an API that will be available to the eTryOn consortium. The API will 
consisit of a minimum of two endpoints to provide access to the product predictions and 
the product recommender. 

4.11.2.1 Authentication 

This Mallzee API is only required to be accessed via internal services. Not directly from the 
client applications. We will use a simple header based authentication method using the key 
x-api-key which will contain a string access key assigned to every consumer of the API. 
This allows Mallzee to track usage and identify which account is accessing the API. 

The eTryOn services will store the given key in the Google Secret Manager so that access 
can be given to any service within the platform. 

4.11.2.2 Product predictions 

This endpoint will require that the user send product data and target market data so that 
the system can predict the popularty of the product and return a confidence score of how 
likely that product is going to prove popular with the target demographic. 

4.11.2.3 Product recommendations 

This endpoint will require that the consumer of the API sends the required product 
information along with the end users market preferences. This system will return an array 
of recommended product IDs based on the information given that will allow the consumer 
to fetch product information on the recommended products. 

These API will be detailed in OpenAPI Spec 3.0 and can be found here (Link to be provided) 

4.11.3 Consequences 

By creating a general purpose API we can supply product performance predictions to all 
applications that require it as part of the overall project. 

4.12 ADR-0012 Metail Scanatar Creation 

Date 2021-05-17 

Status Proposed 

4.12.1 Context 

The scanatars created by the QuantaCorp Body Model Service are post-processed by a 
Metail pipeline that performs clean-up of the scan, landmark detection, mesh fitting, and 
skeleton fitting. The output from the Metail pipeline is a Unity-compatible avatar that can be 
used in eTryOn applications. We would like the Metail pipeline to run every time a new 
QuantaCorp scanatar is uploaded to Cloud Storage. 



D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 37 of 42 

4.12.2 Decision 

Metail will implement an AWS Step Function to run the Metail pipeline. 

This step function will: 

● Read additional parameters (such as gender and height) from its invocation 
parameters; 

● Read the QuantaCorp scan from Cloud Storage using a pre-signed URL; 
● Run the Metail Scanatar Pipeline on this input; 
● Write the finished scanatar to Cloud Storage using a pre-signed URL. 

We will create an eTryOn service user in the Metail AWS IAM account and grant this user 
permissions to invoke the step function. 

We will generate access keys for the AWS service user and store them in Google Secret 
Manager so they are available to services running in the eTryOn Google Cloud project. 

We will implement a Google Cloud Function and configure a trigger to invoke this function 
whenever a QuantaCorp scanatar is written to Cloud Storage. This cloud function will: 

● Create a record in Cloud Firestore to track the pending avatar creation; 
● Create pre-signed Cloud Storage URLs for the input (QuantaCorp scanatar) and 

output (Unity-compatible avatar); 
● Read the configured AWS keys from Secret Manager; 
● Invoke the Metail Step Function and pass the pre-signed input/output URLs and 

additional metadata (such as the user’s height and gender) as parameters. 

We will implement another Google Cloud Function to be triggered when the finished avatar 
is written to Cloud Storage. This function will update the Cloud Firestore record to update 
the status of the new avatar. 

4.12.3 Consequences 

Providing Metail AWS credentials to eTryOn middleware functions enables them to call 
AWS APIs directly. 

Using pre-signed URLs for input and output avoids us having to share credentials in the 
opposite direction. 

Tracking scanatar creation status in Cloud Firestore allows client applications to show jobs 
in progress and be notified when the status changes. 

We will have to ensure the pre-signed URLs have a long enough expiry for the Metail 
pipeline to complete and write its output back to Cloud Storage. 

We will need a mechanism to signal an error if the Metail Pipeline cannot process the input 
QuantaCorp scanatar. 

https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://cloud.google.com/secret-manager
https://cloud.google.com/secret-manager


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 38 of 42 

4.13 ADR-0013 Metail VStitcher Headless Service 

Date 2021-05-17 

Status Proposed 

4.13.1 Context 

Several eTryOn use cases require background processing of Browzwear files to provide 
functionality (for example, to generate the Alembic animation file for use case 1). 
Processing of a Browzwear file will always be triggered by a middleware function when a 
Browzwear file is uploaded to Cloud Storage. 

4.13.2 Decision 

We will follow the pattern described in ADR 12 with a Google Cloud Function in the eTryOn 
account invoking a Step Function in the Metail AWS account to process Browzwear files. 

Metail will implement an AWS Step Function to read input from, and write output to, Cloud 
Storage using pre-signed URLs. The step function will invoke the desired script to run in 
VStitcher Headless running on an EC2 Windows instance. 

4.13.3 Consequences 

We will have to define the processing required by each use case and encapsulate this as 
scripts that can be run by VStitcher Headless. 

We will need a way to identify which script to invoke for each use case (e.g. through a 
naming convention in Cloud Storage). 

If we are unable to secure a license to run VStitcher Headless, the step function will have to 
initiate a manual process where jobs are completed by a human using VStitcher Desktop. 

4.14 ADR-0014 Scanatar Creation 

Date 2021-05-11 

Status Accepted 

Amended By ADR-0015 Token Service for QuantaCorp API 

4.14.1 Context 

In ADR-0010 QuantaCorp proposes to write a cross-platform SDK (for Android, iOS and 
web) that will facilitate photo capture and interact with the QuantaCorp API. This document 
goes into more detail about the architecture supporting this SDK and the scanatar creation 
process. 

http://localhost:1313/techdocs/adr/0012-metail-scanatar-creation/
https://browzwear.com/headless-engine/
http://localhost:1313/techdocs/adr/0015-token-service-for-quantacorp-api/
http://localhost:1313/techdocs/adr/0010-quantacorp-sdk/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 39 of 42 

We assume that all of the applications using the SDK will require the user to login using 
Firebase authentication. This gives the applications access to Cloud Storage and an ID 
token that can be used to interact with other APIs (including the QuantaCorp API). 

We also assume that the QuantaCorp SDK will have access to client-side functionality of 
the Firebase SDK, as all of the client applications will use the Firebase SDK. 

4.14.2 Decision 

The QuantaCorp SDK will use the ID token obtained via Firebase Auth as a bearer token to 
authenticate with the QuantaCorp API. It is the responsibility of the QuantaCorp API to 
validate this token. 

The application implementing the SDK will generate pre-signed URLs to store the output 
from the QuantaCorp system in Cloud Storage owned by eTryOn. We will use a naming 
scheme that stores all of the user’s files under a prefix of their Firebase user ID, which 
simplifies the authorization rules controlling access to Cloud Storage. 

The application will prompt the user to enter their height and gender and save these as 
metadata to Cloud Firestore. 

The SDK will upload the photos required for avatar generation directly to the QuantaCorp 
API along with the metadata, the pre-signed URLs and the ID token. 

On successful upload of metadata and photos, the QuantaCorp system will generate a 
thumbnail from the front view photo and a OBJ file for the scanatar. 

The QuantaCorp system will use the pre-signed URLs obtained from the client to write the 
output thumbnail and OBJ file directly to the user’s eTryOn Cloud Storage area. 

Successful creation of the OBJ file in Cloud Storage will trigger a Cloud Function to hand 
off the OBJ file to Metail’s systems for rigging and creation of the final scanatar. This Cloud 
Function will read the user’s height and gender from Firestore to pass to the Metail API. 

The Metail system will also use a pre-signed URL to fetch the input from the user’s Cloud 
Storage and write back the rigged scanatar. 

4.14.3 Consequences 

● The eTryOn systems will not handle the user’s photos, so we avoid unnecessary 
handling of personally identifying data. 

● Once the thumbnail and scanatar have been written successfully to the user’s 
eTryOn Cloud Storage, the input photographs can be deleted from QuantaCorp’s 
systems. 

● Terms and conditions for applications using the QuantaCorp SDK to generate an 
avatar must make explicit the retention period for the user’s photos, whether they are 
deleted immediately on completion of avatar creation or retained; if retained, the 
terms and conditions must state the reason for retention. 

● Using pre-signed URLs minimizes the trust between systems and removes the need 
to issue service credentials. 

https://firebase.google.com/docs/auth
https://firebase.google.com/docs/storage
https://firebase.google.com/docs/auth/admin/verify-id-tokens
https://firebase.google.com/docs/firestore


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 40 of 42 

● The Cloud Function invoking the Metail API may need credentials as this is the one 
place we don’t have access to the user’s ID token. 

4.15 ADR-0015 Token Service for QuantaCorp API 

Date 2021-05-14 

Status Proposed 

Amends ADR-0014 Scanatar Creation 

4.15.1 Context 

The QuantaCorp API needs to be able to validate that calls are coming from a legitimate 
eTryOn user. In ADR 0014 we proposed using the ID token returned by Firebase Auth as a 
bearer token to authenticate to the QuantaCorp API, but as this is the same token used to 
authenticate to Firebase services it should not be exposed to a third party API. 

4.15.2 Decision 

We will implement a Google Cloud Function to generate short-lived tokens with scope 
limited to the QuantaCorp API. 

These will be JSON Web Tokens containing the ID of the authenticated user in the id field 
and QuantaCorp in the audience field, and will be valid for 15 minutes. 

We will generate a key pair for signing and validating the tokens. We will share the public 
key with QuantaCorp so they can verify the signature. 

4.15.3 Consequences 

Applications using the QuantaCorp SDK will have to retrieve a token (by calling the Cloud 
Function) before interacting with the QuantaCorp API. They will authenticate to the Cloud 
Function using the ID token retrieved from Firebase Auth. 

The QuantaCorp API will be able to identify the user from the id field in the token claims. 
This claim can be validated by verifying the token signature. 

4.16 ADR-0016 Authentication and Authorization 

Date 2021-05-14 

Status Proposed 

4.16.1 Context 

http://localhost:1313/techdocs/adr/0014-scanatar-creation/
http://localhost:1313/techdocs/adr/0014-scanatar-creation/
https://jwt.io/


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 41 of 42 

In ADR 0006 a decision was made to use the Firebase platform to build the client-facing 
applications. This platform includes the Firebase Auth component which provides backend 
services, SDKs, and ready-made UI libraries for account management and authentication. 

Even using a drop-in framework like this we need to understand how accounts will be 
created and how permissions will be granted. 

We identified the following requirements for the three use cases: 

4.16.1.1 UC1: VR Designer 

● Account creation and permission granting will be done by eTryOn staff. 
● Data configuration will be done by Brand staff. 
● No creation of accounts possible through Ux. 

4.16.1.2 UC2: Dress Me Up 

● No brand staff accounts needed. 
● eTryOn staff accounts and permissions will be created manually. 
● Data configuration will be done through CLI by eTryOn staff. 
● End users (influencers) need a registration Ux for account creation. 
● No permissions granting / account approval step needed for end users. 

4.16.1.3 UC3: Magic Mirror 

● No brand staff accounts needed. 
● eTryOn staff accounts and permissions created manually. 
● Data configuration done through CLI by eTryOn staff. 
● End users (shoppers) need a registration Ux for account creation. 
● No permissions granting / account approval step needed for end users. 

4.16.2 Decision 

We will implement UI for end users (influencers) to sign up for an account in the Dress Me 
Up app. 

We will implement UI for end users (shoppers) to sign up for an account in the Magic Mirror 
app. 

We will create IAM accounts with appropriate permissions for eTryOn staff to perform 
administrative tasks (data configuration for Dress Me Up and Magic Mirror apps, brand 
user account creation for VR Designer app). 

The applications will be single tenant. We will not implement group membership and 
management within an app. 

4.16.3 Consequences 

Using Firebase Auth and the supported SDKs makes it easy to implement UI components 
for sign-up and sign-in, and for the client applications to interact with server-side Firebase 
components. 

http://localhost:1313/techdocs/adr/0006-use-an-app-dev-platform/
https://firebase.google.com/
https://firebase.google.com/docs/auth
https://searchcloudcomputing.techtarget.com/definition/single-tenancy


D4.1 Architecture and integration protocol                                                    eTryOn-951908 

Filename: eTryOn_D4.1_final.docx                                                                  Page 42 of 42 

We will have to define authorization rules for Cloud Storage and Cloud Firestore to control 
user access to resources. 

When Cloud Functions are called directly from one of our apps, the auth token will be 
validated automatically but we may need to implement authorization checks in the function 
itself. 

It is not clear from the Firebase Auth documentation that we will be able to prevent a 
malicious user from accessing Firebase backend services to self-register an account, even 
when we do not provide a UI for this. If it is not possible to disable those backend APIs we 
will have to ensure that accounts created in this way have no privileges within the system. 
This is an area requiring more research. 

4.17 ADR-0017 Platform for Each Application revision 

Date 2021-05-18 

Status Proposed 

Supersedes ADR-0009 Platform for Each Application 

4.17.1 Context 

In ADR 0009 a decision was made to use specific platforms for each application. 

There has been a change in the usage of the second application “Dress Me Up app”. 
Instead of a mobile app it is now a web app. So for the implementation we will be using 
JavaScript (React.JS). 

4.17.2 Decision 

Subsequently the platforms that will be used to develop the applications are now the 
following: 

1. VR Designer: Unity 

2. Dress Me Up: JavaScript (React.JS) 
3. Magic Mirror: Unity 

4. VR Designer Backoffice: JavaScript (React.JS) 

4.17.3 Consequences 

We have to take into account permissions to use a laptops camera or a webcam, when a 
user is using the application through a web browser instead of a mobile device. 

 

 

https://firebase.google.com/docs/functions/callable
http://localhost:1313/techdocs/adr/0009-platform-for-each-application/
http://localhost:1313/techdocs/adr/0009-platform-for-each-application/

