

eTryOn - Virtual try-ons of garments enabling novel human
fashion interactions

Project Title: eTryOn - Virtual try-ons of garments enabling novel
human fashion interactions

Contract No: 951908 - eTryOn

Instrument: Innovation Action

Thematic Priority: H2020 ICT-55-2020

Start of project: 1 October 2020

Duration: 24 months

Deliverable No: 3.1

Pattern Recognition on Fashion Imagery

Due date of
deliverable:

31 May 2021

Actual submission
date:

4 June 2021

Version: Final

Main Authors: Stefanos Papadopoulos (CERTH), Martina Pugliese (MLZ),
Manjunath Sudheer (MLZ), Delphine Rabiller (MLZ),
Christos Koutlis (CERTH), Symeon Papadopoulos (CERTH)

Project funded by the European Community under the
H2020 Programme for Research and Innovation.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 2 of 64

Deliverable title Pattern Recognition on Fashion Imagery

Deliverable number 3.1

Deliverable version Final

Contractual date of
delivery

31 May 2021

Actual date of delivery 4 June 2021

Deliverable filename eTryOn_D3.1_final.docx

Type of deliverable Demonstrator

Dissemination level PU

Number of pages 64

Work package WP3

Task(s) T3.1

Partner responsible MLZ, CERTH

Author(s) Stefanos Papadopoulos (CERTH), Martina Pugliese (MLZ),
Manjunath Sudheer (MLZ), Delphine Rabiller (MLZ),
Christos Koutlis (CERTH), Symeon Papadopoulos (CERTH)

Editor Elisavet Chatzilari (CERTH)

Reviewer(s) Thomas De Wilde (QC)

Abstract This deliverable prototypes a Machine Learning pipeline for
the detection of categories and attributes within fashion
imagery as well as the plans for the implementation
backbone.

Keywords machine learning, artificial intelligence, object detection,
classification, fashion category, fashion attribute

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 3 of 64

Copyright

© Copyright 2020 eTryOn Consortium consisting of:

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH)
2. QUANTACORP (QC)
3. METAIL LIMITED (Metail)
4. MALLZEE LTD (MLZ)
5. ODLO INTERNATIONAL AG (ODLO)

This document may not be copied, reproduced, or modified in whole or in part for any
purpose without written permission from the eTryOn Consortium. In addition to such
written permission to copy, reproduce, or modify this document in whole or part, an
acknowledgement of the authors of the document and all applicable portions of the
copyright notice must be clearly referenced.

All rights reserved.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 4 of 64

Deliverable history

Version Date Reason Revised by

0.1 06/04/2021 Table of Contents Martina Pugliese (MLZ)

0.2 23/04/2021 First draft
Martina Pugliese (MLZ), Manjunath
Sudheer (MLZ), Delphine Rabiller
(MLZ)

0.3 26/04/2021
Comments and
suggestions

Christos Koutlis (CERTH)

0.4 29/04/2021
Most content added by
both teams

Stefanos Papadopoulos (CERTH),
Martina Pugliese (MLZ), Manjunath
Sudheer (MLZ), Delphine Rabiller
(MLZ)

0.5 12/05/2021 Beta version

Stefanos Papadopoulos (CERTH),
Martina Pugliese (MLZ), Manjunath
Sudheer (MLZ), Delphine Rabiller
(MLZ), Christos Koutlis (CERTH),
Symeon Papadopoulos (CERTH)

0.6 26/05/2021 Comments by QC Thomas De Wilde(QC)

0.7 28/05/2021 Revised version

Stefanos Papadopoulos (CERTH),
Martina Pugliese (MLZ), Manjunath
Sudheer (MLZ), Delphine Rabiller
(MLZ), Christos Koutlis (CERTH),
Symeon Papadopoulos (CERTH)

1.0 31/05/2021 Final version

Stefanos Papadopoulos (CERTH),
Martina Pugliese (MLZ), Manjunath
Sudheer (MLZ), Delphine Rabiller
(MLZ), Christos Koutlis (CERTH),
Symeon Papadopoulos (CERTH)

1.1 02/06/2021 Final edited version Elisavet Chatzilari (CERTH)

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 5 of 64

List of abbreviations and Acronyms

Abbreviation Meaning

B2C Business-to-consumer

DF DeepFashion (dataset)

MLZ Mallzee

R-CNN Region Based Convolutional Neural Networks

mAP Mean average precision

OD Object detection

CC Category classification

AD Attributes detection

VR Virtual reality

API Application Programming Interface

TF TensorFlow

WP Work package

AR Average recall

RMSprop Root Mean Square Propagation

COCO The Common Objects in Context (dataset)

CLIP Contrastive Language-Image Pre-Training

NLP Natural language processing

DoA Description of Action

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 6 of 64

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 7 of 64

● Table of Contents

● Table of Contents 7

1. Executive Summary 9

2. Introduction 10

2.1 Applications within the fashion domain 11

2.1.1 Applications within eTryOn 11

2.1.2 Applications for the fashion industry 12

2.2 Structure of the report 12

3. Datasets gathering and evaluation 13

3.1 The MLZ taxonomy of clothes 13

3.2 Datasets research and creation 14

3.2.1 Object detection phase 17

3.2.1.1 Manually annotated images (by MLZ and CERTH) 17

3.2.1.2 Images annotated via AWS Sagemaker Groundtruth 19

3.2.1.3 Data augmentation and final count of annotated objects 20

3.2.1.4 Gold standard dataset of images 21

3.2.1.5 Datasets naming convention used in the text for object detection 22

3.2.2 Category classification phase 22

3.2.2.1 The MLZ dataset of category images 22

3.2.2.2 Datasets naming convention used in the text for category classification 24

3.2.3 Attributes detection phase 24

3.2.3.1 The MLZ dataset of images with attributes 24

3.2.3.2 The DeepFashion dataset of images with attributes 27

3.2.3.3 Datasets naming convention used in the text for attributes detection 27

4. Illustration of the pipeline architecture 29

4.1 Object detection phase 30

4.1.1 Model building and evaluation 30

4.1.1.1 Using the DeepFashion dataset 30

4.1.1.2 Using the DeepFashion 2 dataset 32

4.1.1.3 Using the MLZ dataset 35

4.1.2 Planned improvements 37

4.2 Category classification phase 38

4.2.1 Model building and evaluation 39

4.2.2 Planned improvements 48

4.3 Attributes detection phase 48

4.3.1 Model building and evaluation 48

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 8 of 64

4.3.1.1 Cross-modal Vector Alignment for Image-Text pairs 48

4.3.1.2 Multi-label supervised classification 53

4.3.1.2.1 Using the MLZ dataset 53

4.3.1.2.2 Using the DeepFashion dataset 55

4.3.2 Further work and planned improvements 56

4.4 Merged pipeline and inference 57

4.5 Implementation 59

5. Conclusions 61

6. References 62

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 9 of 64

1. Executive Summary

eTryOn’s WP3 focuses on building systems to extract information from fashion imagery
and then use these on the large datasets of product ratings MLZ owns to perform trend
detections and give recommendations to users. The work package (WP) is machine
learning-oriented and will build reusable software that can be utilised as SDK for a
multiplicity of purposes. This report tackles the first part of the work, namely the creation
of models that automatically extract detailed semantic information from fashion images.
After this stage, further models will be developed that will use this information for the
detection of trends in the fashion market and the matching of user preferences to products
for recommendations.

This deliverable describes the research work carried out by the teams involved in WP3
(MLZ, CERTH), ranging from the generation and design of appropriate datasets to the
machine learning methods developed based on them. It is also accompanied with a video
showcasing the results of the presented work1.

11 https://www.youtube.com/watch?v=Pm_kqbb5jaY&ab_channel=eTryOnProject

https://www.youtube.com/watch?v=Pm_kqbb5jaY&ab_channel=eTryOnProject

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 10 of 64

2. Introduction

In the realm of e-commerce fashion, imagery is a key component: consumers judge
products based on how they look, often taking snap decisions. Many retailers invest large
resources in creating good, highly professional photography for their products in order to
elicit the best possible sales response.

MLZ offers B2C apps (both mobile and web-based) for consumers to discover, judge and
purchase fashion products (clothes, shoes and accessories). It is in possession of a large
dataset of consumer opinions on fashion products, dating back several years and has
done extensive exploratory work on how the content and the quality of fashion
photography influences sales.

The MLZ ratings datasets consist of “positive” and “negative” opinions consumers have
expressed on fashion products using various features of the app(s). Users can swipe on
items, hence expressing a like or dislike, but they can also visualise them in a grid screen,
explore their details, and buy them. All these behavioural hints, often composing funnels
(e.g. user searching for products with the search feature, visualising results in a grid and
exploring the details of the most promising ones) constitute the main data asset MLZ owns
and uses to perform market research and predictions. The dataset is unique in its volume
and historical aspect, as well as the fact that it has been gathered in a genuine way: users
are not paid to express opinions and the apps are freely available to anyone, hence data
comes from large and differentiated sectors of the population without incentive-based
mechanisms.

Given the variety of product offers in fashion, many factors can impact consumers’
reactions and the eventual performance of items in the market. Items vary in category,
colour, shape, patterns and general appearance, as well as style-independent factors
such as price and brand. Furthermore, the way an item is presented may non-trivially
affect consumer perception. For instance, the use of (human) models to display fit and
general look can provide visual information that a flat-lay photography cannot convey, and
this may matter more for certain categories than others (e.g., those which are more fit-
critical, such as bottoms and dresses). The background against which the photo is taken
can also have an impact. An important element to consider is whether the product is shown
on its own or in conjunction with others (a model displaying it as part of a full outfit).

For all these reasons, it is critical to base prediction and recommendation engines on
information extracted directly from the fashion imagery and not just the metadata and text
accompanying items. As a matter of fact, the text retailers use to describe their items can
often be incomplete or lack important details, if not outright uninformative and, as such, it
cannot be relied upon for such a task.

This deliverable is aimed at building a system capable of extracting detailed information
from retail images, outlining all the content in the picture to the best possible accuracy,
and of automatically tagging content with clothing category and a detailed set of attributes.
This system is structured in a pipeline of hierarchical information extraction (see section
4), where each step is run on the output of the previous one but is also usable
independently.

Due to the complexity of the task, these systems normally use deep neural networks, an
area of machine learning which in recent times has proved its effectiveness for many tasks
(for example: object detection, clothing attribute predictions, fashion style predictions and
recommendations) and is nowadays being increasingly adopted in many areas.

The development of this system has many potential applications, within the scope of the
eTryOn project, but also more broadly outside of it. While software that performs
information extraction from images is not a new field of work, the use of it within a

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 11 of 64

specialised domain, such as fashion, is at the forefront of innovation. Several fashion
companies are researching this space for use to their own advantage [1, 2]. Challenges
in tailoring the use of machine learning for a specific domain lie in both the creation of
adequate datasets for the training of models and in the choice and fine-tuning of
appropriate models. Both these components require research and development work due
to the lack of commercially available data regarding the fashion domain. Our work aims at
taking part in the innovation in these areas, contributing to the scientific community as well
as creating software for the stakeholders in the project that has the potential to also be
offered commercially to external clients.

For our research, we have utilised existing (public) datasets as well as datasets we have
built ourselves starting from imagery, metadata and textual information owned by MLZ.
These specialised training datasets, created for the purposes of this project, constitute per
se new Intellectual Property the company can use for a variety of reasons and we will
describe the methodologies we used to create them in section 3.

Deliverable D3.1 constitutes research and development work that will function as the
technical basis and prerequisite for deliverables D3.2 (fashion trend detection) and D3.3
(recommendation engine to users). The models developed in D3.1 will be applied on the
large dataset of images MLZ owns to extract information. The coupling of this information
with the MLZ dataset of users’ opinions on fashion products, will provide the basis for the
other deliverables. On the MLZ apps, users interact with products primarily by evaluating
their images, hence being able to know what exactly is present in an image the user has
interacted with is essential to be able to interpret the ratings and use them to train
prediction models.

The models developed in this deliverable could benefit from improvements and
expansions we will describe in the text, but is considered quite satisfactory as a basis for
the subsequent deliverables: subsection 4.4 summarizes the performance achieved.

2.1 Applications within the fashion domain

This subsection describes the many potential applications of our work, both within the
scope of the eTryOn project and outside of it.

2.1.1 Applications within eTryOn

eTryOn aims at developing three applications focusing on virtual try-ons of clothing. All
these applications will require input from WP3, namely:

● for the VR designer app, whose users will be fashion designers interested in
developing new designs, WP3 will provide information about how popular a certain
design is in the market,

● for the social (influencers) app and for the ecommerce app, WP3 will provide a
score of how “recommended” a product is for the user, and possibly, also how
popular it is in the market (as for the designers app)

This deliverable will provide the prerequisite step to train models to understand clothing
details from a fashion image, which will be furnished at API endpoints as part of the
implementation of said eTryOn applications

https://arxiv.org/pdf/1806.09445v1.pdf
https://arxiv.org/pdf/1803.07679.pdf

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 12 of 64

2.1.2 Applications for the fashion industry

The work developed in this deliverable has the potential to be applied outside of the
framework of the eTryOn project.

The datasets created as part of this deliverable may be per se offered as a commercial
component to train models upon. Additionally, a system that extracts information from
fashion imagery can be packaged as its own offering for fashion companies willing to tag
their photography with attributes.

Such a system could be used for a multiplicity of uses, such, for example:

● a catalogue search feature based on the imagery (visual search);
● a mechanism to perform product similarity based on the images, that can be used

for retrieval of similar products to the one at hand;
● mechanisms to assess the quality and completeness of e-commerce photography

(e.g., measuring how often t-shirts are shown in flat-lay vs. in full outfit - alongside
which other items - and recommending the best option).

2.2 Structure of the report

The teams involved in this work (MLZ, CERTH) have devoted effort to building the large
training datasets of machine learning models, and to the research and realisation of said
models. Section 3 will outline the work performed in the creation and quality-check of novel
datasets, while also noting the inherent difficulties that arose in the process.

Section 4 will summarise all results achieved in the machine learning modelling phase,
highlighting strengths and weaknesses of the models developed and planned strategies
for improvements.

Section 5 will discuss the implementation of this research, section 6 outlines the authors’
conclusions and section 7 reports the scientific references used in this work.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 13 of 64

3. Datasets gathering and evaluation

In order to train models, the problem of gathering appropriate datasets has been tackled.
This section will describe the work performed in order to obtain quality datasets, which
has occupied a fair amount of time and effort. The datasets created so far are not
comprehensive of everything in fashion, but a structured procedure to extend them to
missing categories and details is in place and can be utilised.

3.1 The MLZ taxonomy of clothes

The world of e-commerce fashion is very prone to ambiguity in the way clothes are
described, and there are no standards for the categorisation of items into groups. Different
retailers may not only give different names to the same item, but, more importantly,
categorise the same kinds of items under different groups. An obvious example appears
with women's footwear, where summer heeled shoes can be sometimes placed under
“heels” and sometimes under “sandals”, but the issue remains for any kind of category
and item.

MLZ worked around the problem by creating its own “fashion taxonomy”, where categories
of clothing items are hierarchically structured and dependencies of attributes are clarified.
Said taxonomy has been created by a mixture of domain knowledge in fashion and a
statistical analysis of the market data (product information gathered from brands’
websites) the company owns.

In Figure 3-1, we furnish an example structure from the MLZ taxonomy, to illustrate the
concept. The example is for upper-body (tops) clothing and shows the hierarchical
structure in the taxonomy, with categories at the top of the graph, types (or sub-categories)
at the following level and styles following.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 14 of 64

Figure 3-1: Example of the MLZ taxonomy for upper-body clothes.

The MLZ taxonomy has been the standard used during the work carried out in this
deliverable, in the sense that categories and attributes in the training sets have been
derived using the hierarchical structures outlined in the taxonomy itself.

3.2 Datasets research and creation

The pipeline model has been designed to work as a succession of stages:

1. a first stage (object detection) will detect objects within the image: upper-body,
lower-body, full-body, footwear

2. a second stage (category classification) will classify each object individually as
belonging to a certain clothing category

3. a third stage (attributes tagging) will tag the object with finer-grained information
from clothing attributes (e.g. the pattern and the style of the garment)

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 15 of 64

Figure 3-2: The various stages of the model pipeline.

Each of these stages, illustrated in Figure 3-2, has required a specific dataset.

We have conducted research with regards to what datasets are already available. There
are a few that companies and research institutions have created while performing similar
lines of research. They are normally free to use but under a licence that does not
encompass commercial exploitation. One such dataset is the first and second version of
DeepFashion [3, 4] (it is also the most well known comprehensive dataset built for fashion
clothes classification and tagging as of now). We have used both at various stages of our
work for research purposes. Other existing datasets have been deemed less interesting
or too incomplete. Table 3-1 summarises the public datasets that we researched and
explored for this work, the purpose of using these datasets has been purely exploratory
and to draft comparisons with the results obtained with MLZ datasets. Note that in order
to make use of datasets other than MLZ ones, we had to remap categories and attributes
to the MLZ taxonomy, because of the non-universality and lack of standards.

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
https://github.com/switchablenorms/DeepFashion2

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 16 of 64

Table 3-1: Public datasets used for exploratory and comparison work in our
research.

Dataset Description Positives Negatives How we used
it

DeepFashion,
first version
[3]

~800,000
images labelled
for 50
categories,
1,000 attributes,
bounding boxes

large set and
large variety,
presence of
bounding
boxes

lacks footwear,
some attributes
are actually
categories
(e.g., “shirt”,
“cami”),
bounding
boxes are only
for one of the
objects at a
time

Training the
detection of
objects and the
classification of
categories

DeepFashion,
second
version [4]

~490,000
images labelled
for 13
categories,
bounding boxes
and more

large variety
and detailed
information,
bounding
boxes are
annotated for
all objects in a
picture

lacks footwear,
categories
used are
difficult to map
to MLZ ones

Training the
detection of
objects

iMaterialist [5] ~1 million
images tagged
for fashion
attributes

large set and
large variety,
does not have
explicit licence
constraints

large number
of wrong labels

No easy
mapping to
MLZ categories
and large error
rates, so did
not use

Zappos [6, 7] ~50,000 images,
only footwear

large set of
footwear
images

only flat-lay
images and in
the same pose

Used as
footwear
dataset for
object
detection
(using other
sets for non-
footwear), but
because of the
specific pose
the results
were not good
enough

On top of these, we have considered some more datasets for potential exploratory use:

● FashionAI [8]: we could not get access to the dataset after requesting it, this would
have potentially been a useful dataset due to the hierarchical categorization of
garments;

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
https://github.com/switchablenorms/DeepFashion2
https://github.com/switchablenorms/DeepFashion2
https://github.com/switchablenorms/DeepFashion2
https://arxiv.org/abs/1901.07973
https://github.com/visipedia/imat_fashion_comp
https://arxiv.org/abs/1906.05750
http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
http://aronyu.io/vision/papers/cvpr14/aron-cvpr14.pdf
http://aronyu.io/vision/papers/iccv17/aron-iccv17.pdf
https://openaccess.thecvf.com/content_CVPRW_2019/papers/FFSS-USAD/Zou_FashionAI_A_Hierarchical_Dataset_for_Fashion_Understanding_CVPRW_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2019/papers/FFSS-USAD/Zou_FashionAI_A_Hierarchical_Dataset_for_Fashion_Understanding_CVPRW_2019_paper.pdf

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 17 of 64

● YFCC100 [9]: very general dataset not related to any specific domain, that would
create noisy data when filtered;

● Fashionista [10]: rich dataset that contains very detailed information including
polygons around clothes, bounding boxes could be reconstructed with the code
provided but this was not deemed worth doing for exploration reasons;

● ModaNet [11]: dataset of polygonal annotations around clothes, bounding boxes
could be reconstructed but this was not deemed worth doing for exploration
reasons.

Because of the licencing limitations of existing public datasets as well as the fact that MLZ
is interested in having its own training sets as intellectual property in order to be able to
commercialize the results of this work, we have decided to also create training datasets
based on MLZ products. Furthermore, the subsequent deliverables will use MLZ rating-
image pairs, and the information extraction system from this deliverable will be run on MLZ
imagery. Hence, for the consistency of datasets it is better to train models on MLZ datasets
too. Also as described in the DoA, WP3 focuses on the use of datasets owned by MLZ,
so we have worked specifically using those. Other datasets have been explored for
comparison and investigation purposes.

Note that the main focus of our research has been on clothes, so we have left out the
category of accessories. The latter, would have posed specific challenges to both the data
gathering phase and the modelling one, due to the enormous difference in shapes.

3.2.1 Object detection phase

The object detection stage is rather time-consuming in terms of creating a reliable dataset
from scratch. That is because the training images need to be not only tagged for their
content but also annotated with the bounding boxes around said content. However, in our
case it proved to be the most effective way to generate good datasets. In the following,
we will explain our procedure and experiments.

 3.2.1.1 Manually annotated images (by MLZ and CERTH)

MLZ had worked in the past on this topic and it suggested to participants in this deliverable
to split the work of manual image annotation with bounding boxes. For the task, we chose
the labelImg tool [35] (open-source), due to its ease of use and intuitive interface. The tool
allows a user to quickly draw a bounding box around the desired object in an image and
to save the data.

The images to annotate have been retrieved from the MLZ databases by querying for them
under category constraints (e.g., avoiding accessories) and randomising sets to ensure
that no parameter is over-represented (e.g. one brand, which might negatively impact
model performance because they might privilege images/poses of a certain kind).
Products in the MLZ database indeed contain, amongst other things, tags for their
category and their brand. The category is extracted from the name using NLP modeling
which however suffers from mistakes due to uninformative names and general model
performance. We ensured that our data pulls excluded any unwanted categories (for
example: swimwears, accessories) and mitigated the overwhelming presence of a few
brands by introducing

http://projects.dfki.uni-kl.de/yfcc100m/browse?q=shoe&adj=&m=i
https://arxiv.org/abs/1503.01817
http://vision.is.tohoku.ac.jp/~kyamagu/research/clothing_parsing/
http://vision.is.tohoku.ac.jp/~kyamagu/papers/yamaguchi_cvpr2012.pdf
https://github.com/eBay/modanet
https://arxiv.org/pdf/1807.01394.pdf
https://github.com/tzutalin/labelImg

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 18 of 64

Of course, in doing the annotations we had made sure to have a balance of the four types
of objects. We gave ourselves simple but strict rules about how to perform the annotations:

● annotating objects only when fully present in the picture, and leaving those where
the garment is not fully visible (e.g. when an image in upper-body also shows part
of the trousers or when shoes are partly covered)

● annotate coats and jacket as upper-body objects

Figure 3-3 illustrates a couple of examples of images manually annotated by the teams.

Figure 3-3: Examples of manually annotated images for object bounding boxes.

As specified, MLZ images like any collection of fashion images can present the products
both in a flat-lay manner (only the product is present) or with a person modelling it
(potentially other products are present too). For this reason, we decided to annotate a set
which is balanced in the presence of flat-lay and non flat-lay ones.

The flat-lay images can be quickly annotated for the bounding box by using a simple
computer vision mechanism, so they do not require human annotation. The mechanism
we used is based on edge detection (using the Canny edge detector [36]) and the drawing
of a box around the object by using the edges to recognise the pixels in the extremes. An
example is shown below. Note that flat-lay images are particularly common for footwear.
Figure 3-4 shows an example of a footwear image automatically annotated for the
bounding box using this method.

https://en.wikipedia.org/wiki/Canny_edge_detector
https://en.wikipedia.org/wiki/Canny_edge_detector

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 19 of 64

Figure 3-4: Example of a (footwear) image annotated for the bounding box using
the Canny edge detector.

In total, MLZ and CERTH have manually annotated a set of ~3,400 images, to which we
added 906 more images for some specific types of garments which appeared to suffer the
most from misdetections.

 3.2.1.2 Images annotated via AWS Sagemaker Groundtruth

On top of the manually annotated images by MLZ and CERTH, to obtain more data we
made use of the AWS Sagemaker Groundtruth [37] service. The latter allows
crowdsourcing the annotation of image datasets by paying workers to perform tasks. It is
a service AWS built on top of their Mechanical Turk offering and to the authors’ knowledge,
it is the best available in the market to quickly obtain annotated images for machine
learning purposes.

Groundtruth offers an easy-to-use interface whereby one can upload a set of images and
give written instructions to workers as to what to annotate them for and what rules to
follow. We provided the same rules we gave ourselves as per the above. Workers will then
annotate them, but there is no guarantee that they will respect the rules given. When
multiple workers annotate the same picture, which means the bounding boxes may slightly
differ in location, AWS provides the end annotation alongside a “confidence score” for the
bounding box. The confidence score is calculated by consolidating the label results, if
more than one worker annotates a single task. AWS Ground Truth calculates this score
which ranges between 0 and 1 to indicate how confident the ground truth is in the label. It
was advised to not to interpret the values of the confidence score as an absolute value
and not to compare the confidence scores of human-labeled data objects and auto-labeled
data objects. For example, if all of the confidence scores are between 0.98 and 0.998, we
should only compare the data objects with each other and not rely on the high confidence
scores.

The confidence scores for humans are calculated using the annotation consolidation
function for the task, while the confidence scores for automated labeling are calculated
using a model that incorporates object features. The two models generally have different
scales and average confidence. It is worth remarking that the use of AWS Groundtruth

https://aws.amazon.com/sagemaker/groundtruth/
https://aws.amazon.com/sagemaker/groundtruth/

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 20 of 64

comes at a cost, so from the MLZ point of view it was important to assess the cost-quality
balance in order to decide how to best use it for the task.

We asked workers on Groundtruth to annotate circa 2,000 images, and after retrieving
and analysing the results, we have removed all the annotations which appeared to have
a confidence score smaller than 60%. This choice was motivated by the fact that this value
appeared to be the median of the distribution of scores, which meant that a fair amount of
the scores were too low to be usable.

Unfortunately however, after experimenting with running the model with the images from
AWS added into our set, we did not obtain improved results. This was also due to the fact
that in the procedure of removing objects with a low confidence score there is a risk to
remove just one of two footwear items (which are most often present in couples). Due to
this and the fact that this image-gathering is expensive, and based on the quality of results
we obtained with our annotated images only, we decided to not use the AWS Groundtruth
service anymore but to rely on our own annotations only (which was feasible for four
objects and a relatively small set). We leave the possibility to use the service in the future
open, but our results suggest that in order to have quality data one needs to ask for many
workers per image, hence lowering the overall confidence score, at a higher cost.

 3.2.1.3 Data augmentation and final count of annotated objects

Data augmentation is a technique that significantly increases the diversity of the training
image dataset without actually collecting new images. In our case, the augmentation for
object detection training images were performed with the help of imgaug [38] python
library, which supports a wide range of image augmentation techniques. This includes
horizontal and vertical flips, rotation by a specified angle, shifting, padding and many other
operations. The augmentations ensure that bounding boxes are transformed accordingly
alongside the image.

Table 3-2 shows the count of annotated objects alongside the number of augmented
images for each object and image type (flat-lay ones and non-flat-lay ones).

Table 3-2: Number of annotated and augmented objects based on object type and
image type.

Type Object Count of
annotated
objects

Count of objects
from augmented
images

Total objects

Flat-lay images upper-body 2,134 365 2,499

lower-body 1,935 565 2,500

full-body 1,008 1,510 2,518

footwear 6,788 130 6,918

Non-flat-lay upper-body 2,663 N/A 2,663

https://imgaug.readthedocs.io/en/latest/
https://imgaug.readthedocs.io/en/latest/

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 21 of 64

(presence of
human models)

lower-body 1,248 489 1,737

full-body 1,149 1,365 2,514

footwear 2,565 339 2,904

In our case, several experiments were performed based on not only the object type (upper-
body, lower-body, full-body footwear) but also on whether the given image had a human
model or whether it was a flat-lay one. Based on these experiments, the augmentation
operations we decided to use are:

● horizontal flip + vertical flip + rotation for manually annotated images
● vertical flip + rotation for flat-lay ones

The rotation uses an angle randomly chosen from the list of (45, 90, 180) degrees. Note
that flat-lay images were not flipped horizontally because that would have not created
different images (a t-shirt or trouser in flat-lay and flipped horizontally would only appear
different if there are slight asymmetries in the two sides, something rare and not relevant)
so it would have just added redundancy.

Augmentation was also used as a solution to better balance the number of training objects
per object type. Due to reasons inherent to fashion datasets, certain objects are naturally
more populated than others. The column of annotated objects in table 4-2, for non flat-lay
images, shows that despite all the best effort in balancing the set upfront, upper-body
objects are sensibly more frequent than others; this is because the vast majority of images
with human models that display upper-body clothes show the model in the upper side only,
so no other garments are present, and this is not the case with other objects.

We also chose these specific operations after investigating the recent literature about
image augmentation in the case of object detection tasks [12].

 3.2.1.4 Gold standard dataset of images

Apart from images we had to create for training purposes, it was essential for us to also
create a set of novel images for the evaluation of the trained models, which is termed as
a gold standard dataset. This is created, in order to ensure results are unbiased and
correct, and also in order to best diagnose what the model outputs in terms of boxes for
each object, we want to check the actual performance of the model on data that was not
part of the data used to train the models. For the evaluation, new images that were not
present as part of the training sets were retrieved from the MLZ database. This set was
ensured to have the highest quality by thoroughly vetting for the presence of human
models and uncommon postures. We also ensured a balance was kept between flat-lay
and non-flat-lay images. A total of 635 images have been annotated for the gold standard
set, as shown in table 3-3.

Table 3-3: Total number of objects and images annotated in the gold standard
MLZ dataset.

Object No of
objects

upper-body 303

https://arxiv.org/abs/1906.11172v1

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 22 of 64

lower-body 205

full-body 175

footwear 508

 3.2.1.5 Datasets naming convention used in the text for object detection

In the following, we will refer to the object detection datasets with the following naming
convention (“OD” stands for “object detection”):

● OD:MLZ dataset: training dataset composed of manually annotated images, flat-
lay images annotated via the Canny edge detection, augmented images, all
balanced;

● OD:DF1 dataset: DeepFashion set (first version), selected for the objects;
● OD:DF2 dataset: DeepFashion set (second version), selected for the objects;
● OD:AWS dataset: set of images annotated for objects via AWS Sagemaker

Ground Truth;
● OD:MLZ-GS dataset: the gold standard dataset, manually annotated for objects

and built from MLZ images, used for evaluation of model performance.

3.2.2 Category classification phase

 3.2.2.1 The MLZ dataset of category images

For the classification stage, we have also used the MLZ API to download randomised sets
of images. This stage performs a set of supervised classifications (one per object type),
thus a dataset of images labeled with garment category is needed.

We relied on the MLZ taxonomy and counted the number of images MLZ could retrieve
for each category. Then, we chose the classes for each object type based on
representativeness of the variety of fashion garments and class size (number of products).

The set of classes for each object type is specified in Table 3-4.

Table 3-4: List of category types based on object type.

Object Category classes

upper-body shirts, formal jackets, t-shirts, hoodies, tanks, camis, sweaters,
cardigans, blouses, coats & jackets, shawls & capes & ponchos

lower-body shorts, skirts, jeans, trousers

full-body dresses, jumpsuits, playsuits

footwear trainers, boots, flats, sandals, heels

To retrieve said images, MLZ queried its large database by class names, and used regular
expressions to clean names in order to ensure minimal mismatch rate (e.g., for “shirts”,
garments like “shirt dress” must be excluded because they are dresses). In addition to
this, synonyms of categories were taken into consideration while extracting the data from

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 23 of 64

the databases. For example, both “sweater” and “jumper” are used for the category of
“sweaters”.

Each set of category images has also been manually checked by MLZ to make sure that
spurious and wrong cases were removed. This procedure is time consuming but was
feasible and deemed important to perform.

The number of images retrieved for each class is outlined in Table 3-5.

Table 3-5: Total number of images retrieved for each class under each object.

Object Category No. of images

upper-body sweaters 14,380

blouses 14,378

coats and jackets 14,312

shirts 14,247

hoodies 14,100

camis 6,655

tshirts 12,953

formal jackets 13,730

cardigans 13,488

tanks 3,575

shawls, capes, ponchos 1,871

lower-body jeans 13,224

shorts 13,603

skirts 14,021

trousers 14,182

full-body dresses 4,919

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 24 of 64

jumpsuits 4,626

playsuits 4,425

footwear boots 14,125

flats 13,355

heels 13,559

sandals 13,903

trainers 14,303

Image augmentation is considered to upsample minority classes, prior to model training,
in order to mitigate the effects of class imbalance, especially on the upper-body classes.
New samples were generated proportionate to the imbalance ratio between a minority and
the majority class. On this dataset, the image generator randomly performed horizontal
flips, rotations with a factor of 0.3 and zooms within a range of [0.9, 1.2].

 3.2.2.2 Datasets naming convention used in the text for category
classification

In the following, we will refer to the datasets used for the category classification stage with
this naming convention (“CC” stands for “category classification”)

● CC:MLZ - dataset of images labelled for category, retrieved from the MLZ
database and following the MLZ taxonomy;

● CC:DF - dataset of DeepFashion images, which are labelled for category, and
remapped to the MLZ taxonomy.

The remapping of DeepFashion images to MLZ’s taxonomy has been performed by a
combination of quick matching of obvious cases (e.g., DeepFashion’s category of “anorak”
gets mapped to MLZ’s category of “coats and jackets”, DeepFashion’s category of
“culottes” gets remapped into MLZ’s category of “trousers”) and manually checking of the
non-obvious ones.

3.2.3 Attributes detection phase

 3.2.3.1 The MLZ dataset of images with attributes

The attributes of a garment can be many, and span many different features of a product.
Using the MLZ taxonomy, the total number of main attribute keys is 9: pattern, style, leg
style, sleeve style, hem style, fit, neckline style, rise, length. This count is excluding less
important keys like sleeve length or back style. Each of the keys has a pool of possible
values, which brings the total of attribute {key:value} pairs to 196.

Not every attribute key can apply to every object and category, e.g. leg style obviously
applies solely to lower-body and to jumpsuits in the full-body group. Nevertheless,
because the number of attribute keys a single product may have is large (e.g. a t-shirt can

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 25 of 64

have a pattern, a sleeve type, a length, a hem style and a neckline style), this renders the
task rather complex to tackle. More precisely, producing all-between-all logically possible
attribute combinations, from the MLZ taxonomy, results in approximately 107 million
combinations.

We decided to then focus on the most important of the attribute keys, pattern and style
(style expresses a detailed shape of the garment and functions as a subset of the
category). Patterns can of course apply to any category, while styles may be attached to
specific categories (e.g., a “skater” style applies only to shirts and dresses, a “gladiator”
style applies to sandals, etc). The reasoning behind focusing on the most important one
is of practical nature. It would be unfeasible to download and organise reliable datasets
for all attributes, and there might also be problems in the training of neural networks with
that much variety. In comparison with the ‘all-between-all’ combinations, when only using
the attributes related to styles and patterns, the possible combinations are 1,840 which is
more manageable. Taking a step-by-step approach and expanding the datasets for new
attributes has been deemed the most reasonable approach to take for this step. In addition
to this, synonyms of categories were taken into consideration while extracting the data
from the databases. For example, “aztec”, “tribal”, “navajo” are synonyms for the “ethnic”
attribute value of pattern/print. Hence as part of the pre-processing, the synonyms were
replaced and maintained to the root word for easier identification and maintaining a unique
attribute name.

For reference, we report in table 3-6 the list of values for each of these two chosen attribute
keys, separated by the object type and category they apply to.

Table 3-6: Mallzee attribute values for the chosen keys, separated by object and
category.

Attribute key Attribute values list Applies to (object: category)

pattern/print ethnic, graphic, floral, tropical,
striped, checked, animal print,
polka dots, paisley, spots,
tartan, geometric, colourblock,
fair isle, camouflage, grid print,
dip-dyed, tie-dyed, zigzag,
washed

all objects, all categories

style sweatpants, leggings, culottes,
peg, harem, capri, formal,
chino

lower-body: trousers

style cargo lower-body: trousers/shorts

style jeggings, mom, boyfriend lower-body: jeans

style pencil, skater, a-line, frill,
flowy,

lower-body: skirts; full-
body:dresses

style sweatshorts, cutoff, bermuda,
skort, running, cycling

lower-body: shorts

style wedding, bridesmaid, bodycon,
tunic, jumper, shirt, shift, slip,
tea, cocktail, pinafore, wrap,

full-body: dresses

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 26 of 64

sundress, smock

style formal, collarless upper-body: shirts

style blazer upper-body: formal jackets

style boxy, varsity, baseball,
boyfriend, fitted, sport, polo,
muscle

upper-body: t-shirts

style tie-front, bib, popover upper-body: blouses

style waterfall upper-body: cardigans

style duster, parka, trench, peacoat,
coatigan, duffle, bomber, biker,
puffer, anorak, windcheater,
windbreaker, coach, borg,
quilted, trucker

upper-body: coats and jackets

style running, high-top, chunky,
fashion

footwear: trainers

style wellies, winter, chukka,
chelsea, biker, cowboy, sock

footwear: boots

style loafers, brogues, ballerinas,
plimsolls, boat, moccasins

footwear: flats

style mules, d’orsay, espadrilles footwear: flats/heels

style court footwear: heels

style gladiator, t-bar, toe-thong, flip-
flops, sliders

footwear: sandals

Note that values like “shirt” which applies to dresses as a category, are also homonyms
of categories themselves (see table 4-4) so care must be taken in retrieving the data for
those in order to make sure that the category is right. Also, note that some values, like
“boyfriend” or “biker” exist for multiple categories, hence again one needs to be careful
when building such datasets. We have made sure that the retrieved datasets for these
were as balanced as possible in the presence of multiple and/or single attributes, and
manually checked for quality. In much the same way as in the case of categories, we have
run specific queries against the MLZ database, taking care of all ambiguities as specified,
and then also performed careful checks of the data for quality. This step was necessary,
because there can be many situations where even if the product responds to a query for
an attribute/keyword, the image retrieved may not (e.g., the attribute refers only to a
specific detail, or to a side of the product which is not visible).

It is clear from table 4-6 that even with a few attribute keys the task of training classifiers
is demanding in that labelled data is required for it, and values for each key may be many
(for our choices, the pattern key has 20 values and the style key has 91 values).
Furthermore, a standard classification approach would not bring the innovation we aim to
achieve with this work, in that it would exploit the same logic used in the second stage, at
a bigger scale. This work is aimed at creating novel intellectual property that is scientifically

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 27 of 64

sound, so we decided to also perform research using state-of-the-art approaches to this
problem (see details in sub-section 4.3).

 3.2.3.2 The DeepFashion dataset of images with attributes

In order to compare the results obtained from the dataset built with MLZ images, an
attempt was made to evaluate the same models using the DeepFashion dataset. The
DeepFashion dataset contained as many as 1,000 attributes with various levels and
complexities. For example: the attribute “floral” appears in various forms and
combinations, such as “floral”, “floral flutter”, “floral knit”, “floral lace”, “floral lace mini”,
“floral lace sheath”, “floral lace skater”, “floral maxi”, “floral mesh”, “floral midi”, “floral mini”
et cetera; this is due to the way the dataset has been created by the authors [3]. All the
attributes in DeepFashion have been remapped to the attribute taxonomy that Mallzee
created and only the ones matching the taxonomy have been considered. Given that we
have selected only the “pattern” and “style” attribute keys from the taxonomy, for
DeepFashion, we are left with 31 values in total after the pruning. The total number of
images for these is 34,436. For reference, we report in table 3-7 the list of values for each
of these two chosen attribute keys, separated by the object type and category they apply
to.

Table 3-7: DeepFashion attribute values for the chosen keys, separated by object
and category.

Attribute key Attribute values list Applies to (object: category)

pattern/print floral, animal print, striped,
tropical, checked, polka dots,
paisley, tartan, fair isle,
camouflage, grid print, zigzag

all objects, all categories

style chino lower-body: trousers

style cargo lower-body: trousers/shorts

style boyfriend lower-body: jeans

style flare, flowy lower-body: skirts; full-body:
dresses

style bodycon, smock full-body: dresses

style baseball, boxy, polo,
sport,varsity

upper-body: t-shirts

style biker, quilted, windbreaker upper-body: coats and jackets

 3.2.3.3 Datasets naming convention used in the text for attributes detection

In the following, we will refer to the datasets used for the attributes detection stage with
this naming convention (“AD” stands for “attribute detection”)

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 28 of 64

● AD:MLZ - dataset of images labelled with attributes, retrieved from the MLZ
database and following the MLZ taxonomy;

● AD:DF - dataset of DeepFashion images, which are labelled for attributes, and
remapped to the MLZ taxonomy.

The remapping of DeepFashion’s attributes to MLZ’s ones has been performed with a
combination of a quick matching of easy ones (e.g. DeepFashion’s “abstract floral” gets
mapped to MLZ’s “floral” as a pattern) and manually checking of the non-obvious ones.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 29 of 64

4. Illustration of the pipeline architecture

The employed architecture is a machine learning pipeline that hierarchically detects,
classifies and annotates garments in image content with attribute values. Figure 3-2 in
section 3 illustrates the idea:

1. The first stage is that of object detection: a model is trained to detect the presence,
and location, of objects amongst the options of upper-body (clothes for the upper
side of the body), lower-body (clothes for the lower side of the body), full-body
(clothes that cover the whole body, like dresses and jumpsuits), or footwear. After
the detection, each object gets cropped to its bounding box and passed to the
second stage.

2. The second stage classifies each of these objects for its category. Categories are
specific to each object (for instance the categories for lower-body objects are
different from those of upper-body, thus different models are trained for each object
type).

3. The third stage tags the objects with detailed attributes, which are structured into
key:value pairs according to the taxonomy used (see section 4.1).

Using hierarchical pipeline architectures is common to solve complex tasks in computer
vision [13]. In the following, we will summarise the results we obtained for each stage of
the pipeline, the weaknesses we found and the improvements which could be made.

For each of the stages, we leveraged the power of Transfer Learning. We used pre-trained
networks (open-access and freely available), that have been trained on large-scale
datasets (of general type and category), tailoring their last layer to one’s specific set of
images. The networks then adapt their learning to the objects/categories desired. This is
a common way to work with deep learning networks: training a deep network from scratch
to make it learn shapes of interest in pictures would require enormous amounts of data
and long computation times. Instead, transfer learning is commonly adopted as a working
approach because the base network has already been learning general shapes in
pictures, and can fine-tune its weights to the specific ones present in the specialised
dataset.

Figure 4-1 clarifies the procedure and the chronological dependency of each stage to the
subsequent one.

https://arxiv.org/ftp/arxiv/papers/1904/1904.12618.pdf

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 30 of 64

Figure 4-1: Outline of the hierarchical pipeline architecture.

4.1 Object detection phase

4.1.1 Model building and evaluation

This section describes the first stage of the machine learning pipeline which carries out
the task of object detection. A pre-trained model on Microsoft’s COCO dataset [14] as
offered from TensorFlow’s Object Detection API [39], is selected and fine-tuned to detect
the existence and location of objects of interest in an image and then classify them among
four high-level categories: “upper-body”, “lower-body”, “full-body” or “footwear”. The
experiments described in this section were performed on three different datasets,
DeepFashion (OD:DF), DeepFashion2 (OD:DF2) and MLZ’s object-level dataset
(OD:MLZ).

For the evaluation of the Object Detection models, the metrics from COCO challenge [40]
were utilized, which are integrated in TensorFlow’s evaluation module. We will be focusing
on the mean average precision (mAP) metric averaged over 10 intersections over union
thresholds (IoU) (from 0.5 to 0.95 with steps of 0.05 size), which was the central metric of
the competition, and on average Recall@K (AR@K) that signify the average recall given
K detections per image. In the following sections, wherever “mAP” is referenced we refer
to the “mAP IoU = 0.50:0.95” unless otherwise specified.

 4.1.1.1 Using the DeepFashion dataset

We initially performed several experiments using the OD:DF dataset in a first comparative
study to assess the best performing model for the task. After remapping the OD:DF
dataset from the original attribute-level to the object-type-level it consisted of three
classes, upper-body, lower-body and full-body items. Our initial comparative study
consisted of 8 different object detection models, 4 provided by the TensorFlow1 (TF1)
object detection API [41] and 4 provided by the TensorFlow2 (TF2) object detection API

https://arxiv.org/abs/1405.0312
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_training_and_evaluation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_training_and_evaluation.md
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 31 of 64

[42]. In these experiments we down-sampled the OD:DF dataset to 10,000 instances for
each class which were then split into 8,000 and 2,000 for the training and validation sets
respectively. Additionally, the images were cropped around the object’s bounding box,
with a randomly selected factor of 5% to 20%, in order to force the model to focus on the
desired part of the image and not on the background for instance. The models were fine-
tuned for 300,000 training steps with a batch size of 1. The corresponding results are
illustrated in Table 4-1, where “Faster R-CNN InceptionV2” [15] was able to outperform all
other models. Although it is possible that the other models’ predictive performances could
be improved with further tuning of their hyper-parameters, this was not investigated
further.

Table 4-1: Comparative study between 8 different object detection models, pre-
trained on MS-COCO and fine-tuned on a down-sampled version of OD:DF. The

evaluation is in terms of the mean average precision (mAP) and average recall at 1
(AR@1). (With bold we denote the best performance)

Model TensorFlow version mAP AR@100

Faster R-CNN InceptionV2 1 80 84.9

SSD MobilenetV1 640x640 fpn 1 61.7 77.6

SSD InceptionV2 1 64.8 76.4

SSD MobilenetV2 1 57.6 72.4

SSD ResNet50V1 640x640 fpn 2 40.3 51.2

Faster R-CNN ResNet50V1 640x640 2 36.6 67.1

Faster R-CNN ResNet101V1
1024x1024

2 8.8 36.2

SSD ResNet152 v1 fpn 640x640 2 36.6 50

Afterwards, we empirically examined the idea of training three separate object detection
models, one for each object type. The idea was spawned by one significant limitation of
the OD:DF dataset. The dataset contains only a single annotated clothing item per image.
This can be problematic when training object detection models because during the training
phase, the model may detect garment items which are not annotated and are thus
considered a wrong prediction by the loss function and by extension in the gradient
updates. Similarly, while evaluating the model, correct predictions on non-annotated items
will be considered as false positives by the evaluation metrics thus leading to partly
uniformative results. We hypothesized that training three-separate models would
ameliorate this issue. To this end, we randomly selected 10,000 images representing each
class and trained three separate Faster R-CNN models. The results are illustrated in Table
4-2. The multiclass model had significantly higher predictive scores in both mAP@0.75
and AR@100. Additionally, the full-body-only model was found to recognise any
combination of upper- and lower-body clothes as full-body, and was not able to
discriminate between different classes.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://arxiv.org/abs/1506.01497

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 32 of 64

Table 4-2: Faster R-CNN trained on a multi-class object detection task or three
separate single class tasks (with bold we denote the best performance).

Dataset Version mAP@0.75 IoU AR@100

Multiclass OD:DF 97.9 84.9

Upper-Body only 79 74

Lower-Body only 92 84

Full-Body only 83 76

Based on the above outcome, we retraced to training one single multi-class model for the
object detection task. A final experimentation was performed on a larger sample of OD:DF,
where all classes were randomly down-sampled into 50,000 instances for each class. The
larger down-sampled OD:DF was then split into 42,000 and 8,000 for the training and
validation sets respectively. The model, after being trained for 1.5 million steps, was able
to reach a mAP 83.7%. This amounts to a +3.7% improvement compared to the smaller
dataset, indicating that larger datasets can result in better outcomes.

 4.1.1.2 Using the DeepFashion 2 dataset

In order to mitigate the limitations and expand upon the OD:DF dataset, Yuying Ge et al
collected and made publicly available the DeepFashion2 (OD:DF2) dataset. Therefore,
we proceeded our experimentations with OD:DF2 since it contained multiple annotated
garment items per image. OD:DF2 contains 13 classes (1 represents short sleeve top, 2
represents long sleeve top, 3 represents short sleeve outwear, 4 represents long sleeve
outwear, 5 represents vest, 6 represents sling, 7 represents shorts, 8 represents trousers,
9 represents skirt, 10 represents short sleeve dress, 11 represents long sleeve dress, 12
represents vest dress and 13 represents sling dress), which were remapped for this task
into upper-body (classes 1 to 6), lower-body (7 to 9) and full-body (10 to 13).

From the total 491,000 images consisting of 801,000 bounding boxes found in
DeepFashion2, a smaller and balanced sample was selected, consisting of 42,000 objects
per class in the training set and 8,000 objects per class in the validation set. The down-
sampling limit was selected so as to create a dataset comparable to the OD:DF dataset.
In order to balance the dataset, a simple undersampling heuristic was used, where all
examples are kept until a class reaches our defined limit (42,000) and then ignores single
instances of said class and its co-occurrence with other classes. The Imbalance Ratio (IR)
for each class, the MeanIR and SCUMBLE metrics were calculated in order to examine
the level of class co-occurrence and imbalance in multi-label data [16]. IR is calculated as
the ratio between the majority class divided by all other classes individually while MeanIR
simply reflects the mean value across all IRs. Similarly, SCUMBLE takes into account both
the quotient and product among the IR of the various classes to “evaluate the level of
concurrence among minority and majority labels” [30]. Lower values indicate lower levels
of imbalance in the dataset and the lowest possible values are 1 for the meanIR and 0 for
SCUMBLE. Our sample of OD:DF2 shows relatively low levels of imbalance in the initial
dataset and since we are downsampling to a completely balanced set, MeanIR and
SCUMBLE metrics are optimal as can be seen in table 4-3.

https://link.springer.com/chapter/10.1007/978-3-319-07617-1_10
https://www.sciencedirect.com/science/article/pii/S0925231218301401?casa_token=RSAZ-9dnGnEAAAAA:2RG4ajg6Xpz-yCrxZSWBTTisFFulpx4qiTUOmjbcEJUKinc_suQ046x3ol5kr-XxRAnNw0krgg

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 33 of 64

Table 4-3: The calculated meanIR and SCUMBLE metrics designate the level of
imbalance present in the DeepFashion2 (OD:DF2) dataset (lower values indicate

lower levels of imbalance).

Dataset State Per-Class Distribution meanIR SCUMBLE

Original training set upper-body: 139,789 lower-
body: 122,838
full-body: 49,559

1.6528 0.1321

Balanced training set upper-body: 42,000
lower-body: 42,000 full-
body: 42,000

1 0

After balancing and transforming the dataset into “TensorFlow Records”, we selected to
experiment with four object detention models, pre-trained on MS-COCO, that provide a
balanced trade-off between accuracy and computational resources. To this end, we
selected the models depicted in table 4-4 with the model’s mean average precision on the
MS-COCO and its speed in milliseconds when run with 600x600 image on a GeForce
GTX TITAN X, as offered from TensorFlow Object Detection model zoo (TF1 and TF2). It
is important to note, that MS-COCO is a large scale dataset consisting of more than
330,000 images containing 1.5 million object instances of 90 object categories. Therefore
the results of the aforementioned Object Detection models are not directly comparable -
only relatively - to the selected fashion-related datasets which are of relatively smaller
scale.

We kept the Faster R-CNN model from TF1 since it had the best performance on OD:DF
but expanded the comparative study with three more models from TF2, two variants of
EfficientNet and CenterNet with an HourGlass104 backbone.

Table 4-4: The selected object detection models from TensorFlow’s model zoo and

their computational and predictive performance.

Model Speed (ms) COCO mAP

Faster R-CNN InceptionV2 58 28

CenterNet HourGlass104 512x512 70 41.9

EfficientDet D1 640x640 54 38.4

EfficientDet D2 768x768 67 41.8

The performance of each model can be seen in table 4-5, with CenterNet having the
highest performance in 6 out of 10 metrics with a mean average precision (mAP) of 75.6%
and an average recall at 1 (AR@1), of 83.5%. For all models the default hyper-parameters
were used, as given by the TensorFlow object detection API, with the exception of the
batch size that was significantly reduced to fit in the memory and the learning rate only in
the case of EfficientDet-D1 which had a very high default learning rate that caused the
model to quickly overfit while being fine-tuned on the OD:DF2 dataset.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://cocodataset.org/#home
https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt
https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 34 of 64

Table 4-5: The performance of the selected Object Detection models, pre-trained
on MS-COCO and fine-tuned on the DeepFashion2 (OD:DF2) dataset in terms of

the mean average precision (mAP) and the average recall (AR) (with bold we
denote the best performance).

Model Faster R-CNN EfficientDet-D1 EfficientDet-D2 CenterNet

Training Steps 1.5 million 360,000 400,000 300,000

Seconds per
100steps

~13.5 ~40 ~70 ~75

Batch size 1 2 2 2

Parameters Default Learning Rate
1e-4

Default Default

mAP 0.730 0.721 0.648 0.756

mAP (large) 0.738 0.723 0.650 0.759

mAP (medium) 0.484 0.528 0.420 0.437

mAP (small) - - - -

mAP@50IOU 0.919 0.929 0.898 0.905

mAP@75IOU 0.852 0.840 0.759 0.846

AR@1 0.806 0.791 0.728 0.835

AR@10 0.836 0.815 0.762 0.868

AR@100 0.837 0.819 0.767 0.869

AR@100 (large) 0.839 0.820 0.768 0.871

AR@100
(medium)

0.659 0.667 0.605 0.662

When the above models, fine-tuned on OD:DF2, were tested on OD:MLZ-GS excluding
the footwear images they produced the results shown in the following table (table 4-6)
where again the CenterNet with a HourGlass104 backbone showed the highest
performance.

Table 4-6: Models trained on OD:DF2 and tested on the OD:MLZ-GS dataset (with

bold we denote the best performance).

Model mAP AR@1 AR@100

Faster R-CNN 73.9 83.5 84.2

CenterNet 76.9 85.1 86.8

EfficientDet-D1 73.6 81.7 82.8

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 35 of 64

 4.1.1.3 Using the MLZ dataset

Table 4-7 reports the results with a base model of Faster R-CNN, trained on the OD:MLZ
dataset and considering all four objects and testing against the OD:MLZ-GS dataset. Refer
to subsection 4.2.1.5 for the datasets.

Table 4-7: Faster R-CNN trained on variations of the OD:MLZ datasets, and
evaluated on the OD:MLZ-GS dataset (with bold we denote the best performance).

Training dataset mAP AR@100

OD:MLZ 80.6 85.8

OD:MLZ + additional playsuits
and tanks images

76 82.2

OD:MLZ + OD:AWS 58 72

The highest accuracy achieved was using the OD:MLZ which contains a balanced training
set of manually annotated, flat-lay and augmented images. The number of training steps
were increased to 500,000 due to performance of the model which is shown in the
Precision-Recall graph (Figure 4-2 below). The mean average precision (mAP) for large,
medium showed an improvement in the accuracy whereas the smaller objects plummeted
significantly at about 200,000 epochs. The red line plotted on the graph shows the results
of the OD:MLZ-GS dataset, which was used as part of the evaluation process with novel
images.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 36 of 64

Figure 4-2: Precision and Recall graphs of the best Object Detection model (at

500k steps).

As part of the inference process, novel images from the OD:MLZ-GS were tested against
the trained OD model, Figure 4-3 shows some of the results.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 37 of 64

Figure 4-3: Inference results on some of the images in the OD:MLZ-GS dataset.

For completeness, we also report the main results obtained on the DeepFashion datasets,
as per the description in sub-section 4.2.

As a point of comparison, the Match-RCNN, proposed in the original DeepFashion2 paper,
was able to yield a mAP of 66.7% on the clothes detection task with 13 categories [4] More
recently Alexey S. et. al., utilizing a modified CenterNet architecture and multiple post-
processing techniques, were able to increase the mAP up to 73.7% on the same task [34].
While it can not be directly compared, we were able to reach 76.9% on the OD:DF2
dataset and 80.6% on the OD:MLZ dataset, with 3 and 4 object categories respectively.
This indicates that our methodology is comparable with the State-of-the-Art especially
when considering the results in the two following tasks, category classification and
attribute detection.

4.1.2 Planned improvements

The model outputs show some recurring patterns of wrong detections which could be
treated a-posteriori by virtue of simple heuristics.

https://arxiv.org/pdf/1901.07973.pdf
https://openaccess.thecvf.com/content/WACV2021/papers/Sidnev_DeepMark_Real-Time_Clothing_Detection_at_the_Edge_WACV_2021_paper.pdf

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 38 of 64

Figure 4-4: Examples of bad predictions from the object detection inference.

One such case is hands (of the human model) being detected as footwear, another is bare
legs being detected as lower-body when the human model is wearing a short bottom
garment (skirt or shorts), see Figure 4-4. There are some heuristics that can help, in at
least the majority of cases, to clear out such situations:

● (for the hands): if a footwear is detected in the middle of the picture, or near upper-
body garments, remove it as it is likely a hand, however note that this will not work
in cases where hands are next to the feet, such as when the person appears in a
seated pose, these are rare occasions but may be present;

● (for the bare legs): if two lower-body objects are detected in conjunction, one can
think of considering only the smallest one, however this needs to be done with care
because it may not work in all situations.

These are just suggested heuristics and likely non-comprehensive of all cases: a proper
data analysis on a large set of outputs would have to be carried out to determine the best
choice for robust post-processing rules. Furthermore, there might be other cases affected
by similar problems which also need to be investigated.

Other improvements to the accuracy which could be implemented include further
sophistication in terms of scene learning [31] and human parsing [32] for a better detection
of the relations amongst objects.

4.2 Category classification phase

The second stage of the developed machine learning pipeline carries out the task of image
classification into mid-level categories. This task was treated as a multi-class classification
since there are multiple classes that are mutually exclusive. Additionally, since the images
are first passed through an object detection model, apart from having the cropped images
focused only on the object of interest, the high-level class (object) of the item will also be
known (upper/lower/full-body or footwear). Thus, four different models could be trained,
one for each object type category. This approach could improve the specialization of each
model and thus improve their accuracy with the possible tradeoff that misclassified objects
at the object detection phase would be passed in the wrong model. For example, if a
playsuit (which belongs in the full-body object type) was wrongly predicted as a shirt

https://ieeexplore.ieee.org/abstract/document/9412662
https://openaccess.thecvf.com/content_ECCV_2018/html/Ke_Gong_Instance-level_Human_Parsing_ECCV_2018_paper.html

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 39 of 64

(which belongs in upper-body category), it would be passed in the ‘upper-body’
classification model which would not have previously seen playsuits. As a result, we
experimented with both approaches, 1) having four separate models for each object type
and 2) one model trained on all 22 classes in order to empirically examine the overall
performance of each.

4.2.1 Model building and evaluation

Working with the annotated CC:MLZ dataset enabled the training of supervised multi-class
classification models. Similarly to the object detection phase, the most central challenges
of this stage were to:

1. Experiment with various deep learning models
2. Handle the issue of class imbalance
3. Tune the hyper-parameters of each model
4. Select the appropriate transfer learning approach

Due to constraints in computational resources and having a moderately sized dataset we
decided to experiment with models that have a relatively limited number of layers and
parameters but that also had shown adequate performance in benchmark datasets.
Given these criteria, we selected the following deep learning architectures: Xception,
InceptionV3 and multiple variations of EfficientNet whose details as well as their
performance on ImageNet can be seen in table 4-8.

Table 4-8: The selected pre-trained computer vision models for category
classification.

Model Total Parameters * Layers * Accuracy@1 on ImageNet **

EfficientNet-B1 6,575,239 339 78.8

EfficientNet-B2 7,768,569 339 79.8

EfficientNet-B3 10,783,535 384 81.1

EfficientNet-B4 17,673,823 474 82.6

Xception 20,861,480 132 79

InceptionV3 21,802,784 311 78.8

* As implementation in Keras API ** Source : Papers with Code

In order to train and evaluate the performance of these models, the image data and their
labels had to be fed into the model with the use of a data generator that creates a batched
TensorFlow dataset. The dataset was split into three separate sets for training, validation
and testing based on a ratio of 0.8/0.1/0.1 respectively. The exact same sets were used
for all experiments in order to ensure reproducibility and a fair comparison.

The workflow in all supervised multi-class experiments consisted of the following steps.
Initially, one of the models shown in Table 4-8 was selected from Keras API with pre-
trained weights on ImageNet without its previous final classification layer. Then, the input
images from the training set are passed through an image augmentation preprocessing
layer that performs subtle alterations to the images as a method of regularisation and by
extension the mitigation of over-fitting. The images were horizontally flipped at random

https://paperswithcode.com/sota/image-classification-on-imagenet

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 40 of 64

and were randomly rotated and zoomed in by a low factor of 0.1 out of 1. The augmented
images are then passed through the base model. The features that are extracted from the
last convolutional layer of the base model are pooled with the use of global average
pooling thus transforming the output into a 2D tensor. The original classification layer is
replaced by a new dense layer, with uninitialized weights that is activated by the softmax
function and has an output size equal to the number of classes in the dataset.
Subsequently, the model is trained by an adaptive gradient descent optimizer (Adam or
RMSProp) which performs gradient updates per individual parameter, with the use of
sparse categorical cross-entropy as the loss function, since the labels are encoded as
single integers. After each epoch, the model is evaluated on the validation set in terms of
its predictive accuracy; if the validation accuracy is improved a callback is called to
checkpoint the model’s weights and if the validation accuracy is not improved for
consecutive epochs, the training process is terminated and the weights of the best
performing epoch are restored.

The issue of class imbalance was not a major challenge for this task due to the fact that
the CC:MLZ dataset was collected with the explicit objective of creating a balanced
dataset. However, in the cases that a slight imbalance was present, two approaches were
examined: 1) using the class weight parameter or 2) upsampling the minority classes with
the use of image augmentation. In the first approach, the imbalance found in the dataset
is left unaltered but the class weight parameter that is available in Keras’ .fit() function was
set to be proportional to imbalance ratios between all classes. In the second approach the
minority classes were upsampled with the use of data augmentation techniques. The
generated samples were proportionate to the imbalance ratio between a minority and the
majority class. Specifically, the image generator randomly performed horizontal flips,
rotations with a factor of 0.3 and zooms within a range of [0.9, 1.2].

Both approaches were tested on the upper-body-only dataset, which had 11 different
classes with a mean value of 11,244 images per class, a median of 13,730, a maximum
of 14,380 in “sweaters” while “camis” had 6,655 samples and “tanks” 3,575. It was
concluded that training an EfficientNet-B1 with the upsampled dataset yielded a better
performance of +1.92% compared to the balanced class weight approach. Similarly,
training the same model on the CC:DF upper-body-only dataset, there was a slight
improvement of +0.52% with the upsampled dataset. We therefore proceeded using the
“upsampling by image augmentation” technique for most experiments, with the exception
of models that were trained on the whole CC:MLZ dataset since balancing the dataset
would significantly increase its scale and as a result the required computational resources.

During the time that we were executing the initial experiments on the CC:MLZ dataset we
were also implementing them on the CC:DF dataset. The central intention behind this idea
was to later merge the two datasets, since a larger dataset would potentially lead to
improving the model’s performance. The CC:DF dataset was downsampled per class to
match the CC:MLZ’s dataset distribution. Additionally, the former’s class taxonomy was
remapped to match the latter’s. However, the same network architecture would
consistently underperform when applied on the CC:DF dataset. An EfficientNet-B1 model
had +14.15%, +11.32% and 5.68% better performance, for upper-body-only, full-body-
only and lower-body-only respectively, when trained on the CC:MLZ dataset compared
with the CC:DF dataset. After randomly sampling images from the CC:DF dataset, it was
assessed that its attribute-level annotations (the dataset’s original state, annotated with
fine-grained attributes, without applying any remapping of the categories) contained a
certain amount of ‘noise’, wrongly labeled instances, that when mapped on the category-
level resulted in lower performance. When the two full-body-only datasets were merged,
from both CC:MLZ and CC:DF, the model’s predictive accuracy was still 7.84% worse
than when using only the CC:MLZ dataset. It was extrapolated that MLZ’s category-level

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 41 of 64

dataset, despite being smaller in size, had lower rates of wrongly labeled instances and
thus was chosen for the subsequent experiments.

In all aforementioned models, there were a few important hyper-parameters that required
manual and careful selection in order to derive the best possible performance for each
model. Those included the learning rate, the rate in the dropout layers, the batch size and
the optimizer. The hyper-parameters and the selected values are shown in table 4-9. Due
to computational limitations, we were unable to run a complete grid search between all
models, hyper-parameters and datasets but rather enough comparative experiments were
performed and combinatorial directions that did not perform optimally in consecutive
experiments were discarded and consequently, we continued experimenting with those
that had showed better performance.

Due to the fact that we mostly relied on fine-tuning certain portions of pre-trained networks,
the learning rate had to be kept relatively low in order to avoid abruptly updating the
gradients and by extension lead to either under- or over-fitting. Accordingly, we chose to
experiment with low learning rate values of 1e-5, 5e-5 and 1e-4. In most cases, we found
that all three rates resulted in approximately the same result but lower rates required more
epochs to reach the global minimum of the problem and more computational resources
and time. Thus, we maintained a learning rate of 1e-4 for the majority of the experiments.
Secondly, regarding the dropout layer rate, we experimented with values ranging from 0.3
to 0.5. As can be seen in Figure 4-5, larger dropout rates, 0.4 and 0.5, led to a
progressively smaller divergence between training accuracy and validation accuracy,
which translates to a more stable training process and decreased rates of over-fitting.
Additionally, in this particular experiment, the model with the higher dropout rate (0.5) was
able to converge to the same result but two epochs faster than the models with 0.3 and
0.4 dropout probability. As a result, in most experiments, we maintained a dropout rate of
0.5.

Figure 4-5: Training history of EfficientNet with the same hyper-parameters but

with different dropout layer rates.

The defined batch size is naturally dependent on the available memory and consequently
on the network’s size. We selected batch sizes of 16, 32, 64 that were the maximum based
on each individual network size and the available memory. Finally, following the original
EfficientNet paper we utilized the RMSProp [17] optimizer with a decay rate of 0.9, a
momentum rate of 0.9 and batch norm momentum 0.99 but when compared with the Adam
optimizer, Adam had a very slight advantage of +0.67% over RMSprop but a significant
63% faster convergence time with EfficientNet-B1 trained on the full-body-only dataset.
As a result, Adam was selected for the proceeding experiments.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 42 of 64

Table 4-9: The hyper-parameters and their values in the parameter grid search.

Hyper-parameter Values

Learning Rate 1e-5, 5e-5, 1e-4

Dropout Rate 0.3, 0.4, 0.5

Batch Size 16, 32, 64

Optimizer RMSProp, ADAM

Transfer learning techniques were also utilized at this stage. Various deep learning models
that were pre-trained on a large image dataset (e.g. ImageNet) for the task of image
classification were selected as the ‘base model’ and a new untrained classification layer
was added on top. This method allows for three main approaches:
1) Feature Extraction. The pre-trained parameters are ‘frozen’ and the pre-trained model
is used to extract features from the images. In this approach only the weights and biases
of the classification head are trained while the base model’s parameters are left unaffected
throughout the training process.
2) Fine-Tuning. All or a certain portion of the trainable parameters of a pre-trained deep
learning architecture are ‘unfreezed’ and ‘fine-tuned’ for the target dataset.
3) Hybrid. A pre-trained model is initially used as a feature extractor and once the added
classification layer is trained on the target task, a certain portion of the trainable
parameters are ‘unfrozen’ and fine-tuned. This approach is recommended by
TensorFlow's fine-tuning guideline [43] in order to avoid the base model forgetting what it
had learned during pre-training by large gradient updates.

Considering that the dataset was specific to the domain of fashion, solely relying on
‘feature extraction’ would lead to suboptimal results since a model pre-trained on
ImageNet, a general purpose dataset, would not have been exposed to enough fashion-
related imagery. On the other hand, due to the relatively limited magnitude of the
annotated CC:MLZ dataset, approximately 300,000 images compared to the 14,197,122
found in ImageNet [18], fine-tuning all trainable parameters of a pre-trained image
classification model would most likely lead to overfitting and would also require
significantly more computational resources. Thus, fine-tuning a certain portion of a pre-
trained model was deemed as the most appropriate pathway.

In order to empirically compare the efficacy of each approach, Feature Extraction (FX)
and Fine Tuning (FT), we utilized an Xception and an EfficientNet B1 model with exactly
the same hyper-parameters where in the first case all the trainable parameters were
‘frozen’ while in the second, the 50 to last layers of the network were ‘unfrozen’ and fine-
tuned during the training stage. As can be seen in the left side of both figures 4-6 and 4-
7, when using the pre-trained model solely as a feature extractor the accuracy of the model
was slowly reaching a plateau of approximately 80% in terms of validation accuracy while
continuing the training process with unfreezing a few of the trainable parameters
significantly increased the validation accuracy to approximately 90%.

https://www.tensorflow.org/tutorials/images/transfer_learning#fine_tuning
https://www.tensorflow.org/tutorials/images/transfer_learning#fine_tuning
https://paperswithcode.com/dataset/imagenet

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 43 of 64

Figure 4-6: An Xception model trained on full-body categories used as feature
extraction and then fine-tuned (left) and fine-tuned from the first epoch (right).

Figure 4-7: An EfficientNet-B1 model trained on full-body categories used as

feature extraction and then fine-tuned (left) and fine-tuned from the first epoch
(right).

Furthermore, comparing the results between direct Fine-Tuning and the Hybrid approach
(table 4-10), the first approach led to a slightly better performance of +1.15% in Xception
and +0.86% in EfficientNet B1 indicating that the concern of ‘forgetting what the model
had learned during pre-training’ was not present in our experiments. The aforementioned
experiments were performed on the full-body-only dataset but it was also reproduced in
the upper-body-only dataset. Despite the seeming training instability of directly fine-tuning
a pre-trained model and its visible over-fitting (on the right side of Figure 4-6 and Figure
4-7) we concluded that with stronger regularisation (higher dropout rate and image
augmentation) the training process would become more stable and the divergence
between training and validation accuracy would decrease thus mitigating the phenomenon
of over-fitting on the training dataset. Additionally, utilizing an Early Stopping callback
could end the process significantly earlier while conserving high levels of accuracy when
compared with the Hybrid approach which required additional epochs for only training the
classification layer. Therefore, we proceeded with selecting the second option, of direct
fine-tuning, for experiments reported in table 4-10.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 44 of 64

Table 4-10: Comparing a Hybrid Transfer Learning approach where a model is first
utilized as a Feature Extractor (FX) and then Fine-Tuned (FT) with directly Fine-

Tuning the model from the first epoch.

Model Dataset Fine-Tuning
Method

Test Accuracy

Xception Full-body-only 10 FX epoch + 10
FT epoch

90.7%

Xception Full-body-only 20 FT epochs 91.85%

Efficient Net B1 Full-body-only 10 FX epoch + 10
FT epoch

91.13%

Efficient Net B1 Full-body-only 20 FT epochs 91.99%

Xception Upper-body-only 10 FX epoch + 10
FT epoch

84.05%

Xception Upper-body-only 20 FT epochs 83.91%

Efficient Net 1 Upper-body-only 10 FX epoch + 10
FT epoch

85.91%

Efficient Net 1 Upper-body-only 20 FT epochs 86.27%

Performing multiple experiments with direct fine-tuning of InceptionV3, Xception and
EfficientNet variants we concluded that EfficientNet B3 and B4 were able to consistently
outperform the other architectures in all datasets. A significant advantage of EfficientNet
is that its larger variations are scaled efficiently in terms of all three neural network
‘dimensions’: input resolution, depth and width. We hypothesise that this fact enables for
improvements in predictive accuracy while maintaining manageable demands in terms of
computational resources. A selection from all performed experiments comparing the
various network architectures when different amounts of the model’s highest layers are
fine-tuned, can be seen in table 4-11. Only the best performances are presented in the
table by each network on different quantities of fine-tuned layers with a dropout rate of 0.5
and the batch size being constant for each dataset.

Table 4-11: The performance of various models pre-trained on ImageNet and
partly fine-tuned for garment category classification. (With bold we denote the

best performance)

Training Dataset Model Fine-tuned Layers Learning Rate Accuracy

CC:MLZ - full-body EfficientNet-B1 30 1e-4 90.69

 50 1e-4 91.7

 100 1e-4 91.77

 EfficientNet-B2 80 1e-4 92.34

 100 1e-5 91.34

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 45 of 64

 EfficientNet-B3 80 1e-4 91.41

 100 1e-4 93.63

 EfficientNet-B4 80 1e-4 93.77

 100 1e-4 94.2

 Xception 30 1e-4 93.06

 50 1e-4 92.91

 100 1e-4 92.91

CC:MLZ - lower-
body

InceptionV3 30 1e-4 89.79

 50 1e-4 89.72

 100 1e-4 92.7

 EfficientNet-B1 30 1e-4 90.37

 50 1e-4 90.19

 100 5e-5 91.79

 EfficientNet-B2 100 1e-4 91.46

 EfficientNet-B3 100 1e-4 93.19

 EfficientNet-B4 100 1e-4 93.86

 Xception 50 5e-5 93.75

 100 1e-4 93.3

CC:MLZ - footwear InceptionV3 30 1e-4 90.75

 50 1e-4 91.87

 Xception 30 1e-4 92.36

 50 5e-5 93.17

 80 5e-5 93.59

 100 5e-5 92.86

 EfficientNet-B1 30 1e-4 92.52

 50 1e-4 92.61

 100 1e-4 93.39

 EfficientNet-B2 100 5e-5 93.89

 EfficientNet-B3 100 1e-4 93.94

 EfficientNet-B4 100 1e-4 94.21

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 46 of 64

CC:MLZ - upper-
body

EfficientNet-B1 50 1e-4 80.14

 100 1e-5 83.16

 140 5e-5 85.31

 EfficientNet-B2 100 1e-4 83.91

 140 1e-4 86.04

 EfficientNet-B3 100 1e-4 86.33

 140 1e-4 85.75

 EfficientNet-B4 100 1e-4 87.64

All the above experiments were performed with the original MLZ dataset consisting of full
scale images. Since the images were not cropped, separating different object types, some
could entail items belonging in different garment categories. After training the Object
Detection model, described in the previous section, we were able to crop the images
around their predicted bounding boxes and keep only those matching the mid-level
garment category. If for example, an image depicted a model wearing both a t-shirt (upper-
body) and trousers (lower-body) but the image was retrieved from the CC:MLZ dataset
labeled as a t-shirt (since that was the marketable product in that case), only the first
cropped image would be kept for the category classification stage. This enabled the more
‘focused’ and attentive training of the four separate models, one for each object type.
Comparing the models trained on the uncropped images with those that used the cropped
ones, we can observe a modest improvement of +0.37% from a mean value of 92.47% to
92.84% respectively. The difference between the two was initially expected to be higher.
We hypothesise that since each model only encountered items from a specific object type
and would also encounter images of the same class photographed from various ranges
(from close-ups to long-shots) they were able to extract and identify only the relevant
features relating to each of the known classes. Additionally, using the cropped CC:MLZ
enabled the training of one model for all 22 garment category classes. The best performing
model for this task, a fine-tuned EfficientNet-B4, was able to yield a 92.24% accuracy
score, a slight -0.6% compared to the mean accuracy of the four separate models.
However, having a single model for all 22 garment categories has two significant
advantages. First, it is easier to re-train and more efficient to employ compared to having
four separate models. Secondly, having one model for all classes does not suffer from the
misclassified items that may result from the object detection phase. In the case of having
separate models for each body type, an object wrongly classified as an “upper-body” type
while being “full body” will be passed in the wrong model that has not been trained to
recognise full-body type items. Therefore, we consider that the very slight performance
drop is outweighed by the two aforementioned advantages. The detailed results for each
of the best performing models per dataset can be seen in table 4-12.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 47 of 64

Table 4-12: Summary of best performing models for the task of category
classification.

Training dataset Cropped
Images

Accuracy Network
model used

Hyper-parameters

CC:MLZ -
Full Dataset

Yes 92.24% EfficientNet-B4 Fine-tuned layers: 100
Learning rate: 1e-4
Batch Size: 32
Dropout rate : 0.5
Balancing: class weight

CC:MLZ - Full-
Body

Yes 94.9% EfficientNet-B4 Fine-tuned layers: 100
Learning rate: 1e-4
Batch Size: 32
Dropout rate : 0.5
Balancing: over-sampling

 No 94.2%

CC:MLZ - Lower-
Body

Yes 94.44% EfficientNet-B3 Fine-tuned layers: 50
Learning rate: 1e-4
Batch Size: 32
Dropout rate : 0.5
Balancing: over-sampling

 No 93.86% EfficientNet-B4 Fine-tuned layers: 100
Learning rate: 1e-4
Batch Size: 32
Dropout rate : 0.5
Balancing: over-sampling

CC:MLZ -
Footwear

Yes 93.86% EfficientNet-B4

Fine-tuned layers: 100
Learning rate: 1e-4
Batch Size: 32
Dropout rate : 0.5
Balancing: over-sampling

 No 94.21%

CC:MLZ - Upper-
Body

Yes 88.15% EfficientNet-B4 Fine-tuned layers: 100
Learning rate: 1e-4
Batch Size: 32
Dropout rate : 0.5
Balancing: over-sampling

 No 87.64%

As a point of comparison, the FashionNet model, proposed in the original DeepFashion
paper, was able to yield 82.58% and 90.17% in terms of top-3 and top-5 accuracy
respectively on the Category Classification task with 50 categories [3]. More recently Li.
et. al., with the use of multi-task learning, were able to increase the top-3 and top-5
accuracy scores up to 93.01% and 97.01% on the same dataset [33]. Applying our
proposed methodology on the DeepFashion dataset - first passing the images through our
object detection model and then re-training an EfficientNet-B4 network on the cropped
images - was able to slightly surpass the current state-of-the-art with 93.71% and 97.40%
top-3 and top-5 accuracy. Additional advantages of our approach when compared with
previous studies include the ability to work on full-scale real-world fashion imagery, that
may depict multiple garment items per image, without utilizing overly complicated
architectures, manual guidance from domain experts or requiring landmark and mask
annotations; which are arguably two costly and time-consuming types of annotation.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 48 of 64

4.2.2 Planned improvements

The models for this stage perform well, unsurprisingly given the current quality of state-of-
the-art neural networks for basic classification tasks. However, there may still be room for
improvement in terms of minimising misclassifications that may arise from certain
ambiguous cases due to the general diversity of fashion imagery.

Some further data cleaning work could be performed to achieve a clearer separation of
classes in the first place, so that ambiguity is improved, for instance in situations like the
difference between jeans and trousers.

4.3 Attributes detection phase

The third stage of the developed machine learning pipeline carries out the task of detecting
fine-grained attributes from garment imagery and classifies them into multiple low-level
categories. The selected types of attributes that the model was trained to discern were 20
classes regarding the pattern or print of the garment and 92 types of low-level categories,
a total of 112 classes. Due to the fact that styles and patterns are not mutually exclusive -
meaning that a garment may possibly be characterised as having both a style and a
pattern (e.g. a checked shirt or a floral sundress) - this task is treated as a multi-label
classification problem. However, it was assumed that styles and patterns are internally
mutually exclusive (an item can not have both “floral” and “camouflage” as its print, for
instance), meaning that an item can not belong to more than one style or print/pattern at
the same time. This assumption was also reflected in the collected MLZ dataset with only
1,175 instances exhibiting more than one style or pattern attributes. After manually
examining it, it was deemed that most were either wrongly labeled or very rare outliers.
The MLZ dataset utilized for attribute detection consists of a total of 310,358 image-text
pairs, after dropping a few duplicates and filtering instances with more than one type
pattern or style. The dataset was split with a ratio of 9 to 1, into a training set (279,322)
and a validation set (31,035). The exact same sets are being used in all following
experiments regarding attribute detection.

4.3.1 Model building and evaluation

For the task of Attribute Detection, two main approaches were examined:

1. Cross-modal Vector Alignment for Image-Text pairs

2. Multi-label Supervised Learning

The first approach was inspired by two recent papers by OpenAI [19] and Google
Research [20] that utilized contrastive learning between Image-Text pairs in order to
perform various classification and retrieval tasks. The objective of the first approach was
to train a vision encoder for the task of detecting fine-grained fashion attributes without
the need of manually annotating a considerable amount of images. The second approach
was reserved as a back-up plan in case the first did not perform adequately but would
require the collection of an annotated dataset.

 4.3.1.1 Cross-modal Vector Alignment for Image-Text pairs

Both OpenAI’s CLIP and Google’s ALIGN follow a similar workflow that requires one
Image Encoder, one Textual Encoder and for both to be trained simultaneously with the
use of contrastive learning. During the training phase, the image and text of a pair are
given to their respective encoder, the resulting embeddings of both encoders are
‘projected’ in the same embedding space. Thereafter, a dual encoder calculates the dot
product between image and text embeddings and the loss is calculated as the mean cross

https://arxiv.org/pdf/2103.00020.pdf
https://arxiv.org/abs/2102.05918

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 49 of 64

entropy between the predicted and the target image-text pairs, reflected in the main
diagonal. After the training is completed, the dual encoder is discarded and only the two
separate encoders are saved. Both models can be used for either zero-shot classification
or retrieval tasks. In the first case, for performing the zero shot classification, all desired
‘target sentences’ are given in the text encoder and each image is being matched with the
top-K most appropriate captions/sentences.

Figure 4-8: OpenAI’s CLIP workflow for pre-training the model (left) and for

performing zero-shot classification (right)

OpenAI’s CLIP was made publicly available shortly after the paper’s release, thus we were
able to experiment with it as a zero-shot classifier or fine-tuning it on the fashion domain.
On the other hand, Google’s ALIGN has not yet been made available and therefore we
considered recreating a similar architecture. Instead of using the Visual and Textual
transformers used in OpenAI’s CLIP, we used similar components to Google’s ALIGN.
Initially we used variations of the BERT (Bidirectional Encoder Representations from
Transformers) model (bert-base-uncased) [21] for the text encoder and variants of
EfficientNet for the Image Encoder, a family of models that has proven very effective in
the Image Classification Task. The EfficientNet models pre-trained on ImageNet were
taken from Keras API while the variants of BERT were taken from TensorFlow Hub. On
top of both pre-trained encoders, one or more fully connected layers are added with a
predefined output dimension so that the image and text embeddings can be matched in
the same embedding space. These layers will be referred to as ‘projection layers’. In the
case where more than one projection layer is added on top of the encoders, the in-
between layers are connected with an optional Dropout layer and are activated by a GeLU
activation function.

During the training phase, the image-text pairs are read as a tf.dataset with the use of a
data generator. The images are resized according to each EfficientNet variant expected
input, passed through a data augmentation pre-processing layer that performs random
horizontal flips, rotations and zooms by a factor of 0.1. The text is tokenized with BERT’s
tokenizer, also offered by TensorFlow Hub, and then trimmed by a user-defined sequence
length, with the maximum possible value being 512. After preprocessing both the images
and texts inside the batch, the data are passed through their respective encoder, their
output embeddings are projected onto the same embeddings space and then are
normalized with l2 normalization. Afterwards, the loss function is calculated, similarly to
OpenAI’s CLIP, as the mean cross entropy between the scaled pairwise cosine similarity
of image and text embeddings and the target matrix, which is an identity matrix of size
equal to the batch size. As with OpenAI’s CLIP, the scaled pairwise cosine similarity is
calculated as the dot product between Image Embeddings and the transpose of Text
Embeddings multiplied by the exponential of a temperature parameter. Temperature is a

https://arxiv.org/abs/1810.04805
https://keras.io/api/applications/efficientnet/
https://tfhub.dev/google/collections/bert/1
https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/#keras-implementation-of-efficientnet
https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/#keras-implementation-of-efficientnet

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 50 of 64

trainable variable which is initially set to 0.07 and its exponential is clipped to a maximum
of 100 (so as to avoid training instability).

During the evaluation phase the text encoder receives all possible combinations between
different attribute types in the form of sentences and matches the image embeddings with
those sentences. All selected top-1 sentences for each image are transformed into multi-
label binaries and evaluated against the ground truth of the validation set. In the case of
using only styles and patterns/prints, there were 1840 possible combinations between the
two. Because patterns/prints do not have a ‘NONE’ option (for the cases where no
particular pattern is present) the 92 garment styles were also added on their own, resulting
in 1,932 possible sentences for the multi-label evaluation phase. When using the category
classification dataset, the 22 classes were given as the potential captions for the
evaluation phase.

Similarly to the category classification stage, multiple models and hyper-parameters had
to be carefully selected in order to access the best possible performance. In terms of
model selection, we mostly experimented with EfficientNet B3 and B4 which had the best
performance in category classification, and four small-BERT variants which can be seen
in table 4-13. Indicatively, Bert-L-4_H-512_A-8 stands for: Small uncased BERT with L=4
transformer blocks, a hidden size of H=512, and A=8 attention heads.
The models were optimized with the use of AdamW, or Adam with weight decay, with a
weight decay value of 0.01, 0.99 for the beta_1 and 0.999 for beta_2.

Table 4-13: Variations of small-Bert utilized as the text encoder.

Small BERT models Transformer
Blocks

Hidden Layer
Size

Attention
Heads

Total
Parameters*

L-2_H-128_A-2 2 128 2 4,385,921

L-4_H-256_A-4 4 256 4 11,170,561

L-4_H-512_A-8 4 512 8 28,763,649

L-12_H-768_A-12 12 768 12 109,482,241

* As implemented in TensorFlow Hub

Regarding the selection of hyper-parameters, the Learning Rate, Batch Size, Dropout rate
the number of projection layers and their dimensions had to be tuned. The detailed hyper-
parameter space that we experimented with, can be seen in table 4-14.

Table 4-14: Hyper-parameter space for the conducted experiments

Hyper-parameter Value

Learning Rate 1e-3, 1e-4, 5e-5

Batch Size 32, 64, 128, 256

Dropout rate 0.1, 0.3, 0.5

Projection Layers 1, 2, 4, 8

Projection Layer Dimensions 128, 256, 512

https://tfhub.dev/google/collections/bert/1

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 51 of 64

Transfer learning was also used for this task, where we experimented with the following
approaches:

1. Using the pre-trained encoders as ‘frozen’ feature extractors
2. Only fine-tuning the Vision Encoder
3. Fine-tuning both the Vision and Textual Encoders.

During the time of retrieving the MLZ Attribute dataset, we performed numerous
experiments with the Image-Text pairs from the category classification. For this task, the
images and their “product names” - very short descriptions about the product - were used.
A noteworthy, but expected, insight was that the contrastive model was very sensitive to
changes in language. When the model was trained on the original, unprocessed, textual
data (which is naturally diverse and contains synonyms) it would under-perform during the
evaluation phase. When the original category classes were provided as sentences, for
example “t-shirts / formal jackets / skirts” etc, the model would under-perform due to the
fact that it had not encountered these words in this particular form, while changing the
target sentences (after manual experimentation) to “tee / blazer / suit / skirt”, etc., there
was an increase of +13%. As a result we chose to alter the training set by replacing all
important keywords and their synonyms related to the garment categories with only one
specific word. This way we could know that the target sentences were reflected in the text.
The exact same process was also applied while retrieving the MLZ Attribute dataset.

Regarding the hyper-parameter tuning, comparably to the category classification,
relatively higher learning rates (1e-3) would perform better for the feature extraction
experiments, medium values (1e-4) when fine-tuning only the vision encoder and low
values (5e-5) while fine-tuning both the vision and textual encoders. Furthermore, we
concluded that, unlike the category classification task, the selected batch size was playing
a significant role during the contrastive learning, effectively working as a means of
regularisation for the model, with larger values (128 or 256) yielding improved
performances ceteris paribus. Naturally, the selected batch size was constrained by the
available memory and the size of the dual encoder network. However, even with larger
models and while fine-tuning both encoders, we tried to define the highest possible value
for the batch size (64 or 128). Concerning the number of projection layers and their
dimension, an output embedding dimension of 256 was found optimal while a higher
number of projection layers benefited only when both encoders were frozen or when only
the vision encoder was fine-tuned. On the contrary, a single projection layer was sufficient
when fine-tuning both encoders. Finally, a dropout rate of 0.3 was found as optimal, and
the model did not benefit from further regularisation.

With regards to discovering the better performing transfer learning approach, the initial
experimentation on the category classification dataset strongly indicated that fine-tuning
both the vision and textual encoders could lead to significantly higher levels of accuracy.
Larger BERT variants tended to over-fit and produce very low accuracy scores, while the
smaller BERT (L2, H128, A2) yielded the best performance. The best accessed result by
each transfer learning approach can be seen in table 4-15.

Table 4-15: Best performing model for each transfer-learning approach with the
Category-Level Image-Text dataset. (With bold we denote the best performance)

Vision Encoder Text Encoder Accuracy F1-Macro

EfficientNet B3 (frozen) Bert L4, H512, A8 (frozen) 80% 77.5%

EfficientNet B3 (fine-tuned) Bert L4, H512, A8 (frozen) 83.3% 78.8%

EfficientNet B4 (fine-tuned) Bert L2, H128, A2 (fine-tuned) 87.7% 85.8%

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 52 of 64

Comparatively, our custom cross-modal vector alignment model was able to reach 87.7%
in terms of accuracy, while the fully supervised multi-class classification on all 22 garment
classes reached 92.24%. While the former is lower by 4.54%, we must take into
consideration that this approach did not require nor utilized annotated data, and by
leveraging image to text similarities it was able to reach close to the fully supervised
experiments. This outcome validated the potential usefulness of the approach and
therefore we proceeded with applying the same workflow to the attribute dataset.
Unfortunately, similarly high accuracy scores could not be reached on the Attribute-level
dataset. With the better performing model - fine-tuning both an EfficientNet-B4 and a small
Bert with L2, H128, A2 - reaching 37.49% categorical accuracy, 40.47% F1 macro and
35.61% F1 micro.

Attempting to interpret our custom model’s limited performance on the attribute dataset,
we initially hypothesised that OpenAI’s and Google’s ALIGN’s impressive performance on
multiple benchmark datasets was only possible after being trained on approximately 400
millions and 1.8 billions image-text pairs respectively. These scales are far beyond our
custom datasets that consisted of 300 thousands image-text pairs. In this respect, in order
to test this hypothesis and additionally better assess the performance of our custom self-
supervised contrastive model we performed additional experiments with OpenAI’s CLIP
which has been made publicly available with four different vision encoders, ResNet50,
ResNet101, ResNet50x4 and ViT-B/32. We experimented with the three following
approaches:

1. CLIP as a zero-shot classifier
2. Linear probing CLIP
3. Fine-tuning the whole CLIP model on the fashion domain

In the first approach, the CLIP model is called to classify fashion imagery in fine-grained
attribute classes without being fine-tuned to the fashion domain. The second approach,
similarly uses the CLIP model but as a feature extractor which features are passed to a
multi-label linear classifier (a logistic regression model) in a supervised manner. In the
third approach the training process from the original paper was re-created and the whole
model was fine-tuned on MLZ’s attribute-level dataset. The detailed results can be seen
in table 4-16.

Table 4-16: Experimentation with OpenAI’s CLIP on fine-grained fashion attribute
detection in comparison with our custom contrastive image-text training model.

CLIP Task Vision Encoder F1 Micro F1 Macro

Zero-shot ResNet-50 17.19% 11.60%

Zero-shot ResNet-101 18.36% 12.41%

Zero-shot ViT-B/32 19.69% 13.14%

Linear Probing ViT-B/32 54.9% 46.28%

Fine-tuning ResNet-50 30.98% 23.61

Fine-tuning ResNet-101 13.77% 9.07%

Fine-tuning ViT-B/32 6.82% 4.3%

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 53 of 64

Custom model Encoders F1 Micro F1 Macro

Fine-tuning EfficientNet-B4 small-
BERT L2, H128, A2

40.47% 35.61%

Fine-tuning OpenAI’s CLIP expectedly was able to increase the model’s predictive
accuracy compared to zero-shot classification but it could not improve upon our custom
contrastive model. Additionally, fine-tuning CLIP showed improvements only when
employing the smaller computer vision network, a ResNet-50, while larger architectures,
ResNet-101 and ViT-B/32, overfitted on the training data and their performance
disintegrated. Our initial hypothesis that a model trained on a huge dataset would
outperform our custom model was not confirmed. We believe that our collected Attribute-
level dataset is relatively small containing only a few thousand samples for each attribute
value, and at the same time very broad and diverse, having 1932 possible classification
outcomes, and therefore it was not sufficient to train a self-supervised contrastive model.

 4.3.1.2 Multi-label supervised classification

Due to the fact that the self-supervised image-text training resulted in limited performance
on the attribute detection task, we proceeded by experimenting with a fully supervised
framework.

 4.3.1.2.1 Using the MLZ dataset

In this instance, the exact same dataset was utilized for this task, with identical training
and validation sets (AD:MLZ). Since the target classes were not mutually exclusive, this
was treated as a multi-label classification problem.

For the supervised framework, instead of using image-text pairs, we used the image-label
pairs. The labels were transformed into multi-label binaries, and instead of CLIP’s
contrastive loss function, the sigmoid with the binary cross entropy (BCE) were used as
the activation and loss functions respectively. In this way the multi-label task is treated as
multiple binary classification tasks by the network. Additionally, we experimented with the
soft-F1 loss function [44], in which the F1-score is made differentiable and as a result the
network can be directly optimized on the F1 score, which is a more ‘class-imbalance-
aware’ metric and mitigates the need for re-sampling the data and secondly it reduces the
need for searching the optimal threshold during the inference phase [24, 25].

In terms of evaluating the model’s performance, the Categorical and Binary Accuracy were
used as well as the Macro F1 score with a threshold at 0.5. The categorical accuracy
measures the exact match between the actual and predicted labels while the binary
accuracy, which is equivalent to the “1 - hamming loss”, expresses the fraction of wrongly
predicted labels to the total number of labels and is a less ‘strict’ metric.

On account of having limited time and computational resources we took some insights
learned during the Category Classification stage as granted. We only experimented with
EfficientNet B3 and B4 and did not experiment with smaller variants or with InceptionV3,
Xception or ResNets. Low learning rates (1e-4 or 5e-5) were used during the fine-tuning
phase and the dropout rate was always set at 0.5 and subtle image augmentations were
also applied on the input images, with random horizontal flips, random rotations and
zooms being performed with a factor of 0.1, the same augmentation strategy as in the
contrastive experiments in order to ensure comparability. On the other hand, an addition
during the attribute detection phase, was the experimentation with using pre-trained
weights from self-trained EfficientNets with Noisy Student [26] instead of solely relying on
weights pre-trained on ImageNet.

https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
https://www.aclweb.org/anthology/2020.eval4nlp-1.9.pdf
http://proceedings.mlr.press/v54/eban17a/eban17a.pdf
https://arxiv.org/pdf/1911.04252.pdf

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 54 of 64

As the results shown in table 4-17 illustrate, utilizing the soft F1 loss function did not benefit
the model’s training process, resulting in significantly lower predictive accuracy when
compared with models trained on the binary cross entropy. Furthermore, using the pre-
trained weights from the Noisy-Student paper instead of ImageNet, yielded an impressive
+3.86% improvement when fine-tuning an EfficientNet-B4 model with the same
parameters. Attempting to fine-tune more of the EfficientNet’s layers did not improve the
performance any further thus leaving an EfficientNet-B4 model with Noisy-Student weights
with 100 re-trained layers, as the best performing model.

Table 4-17: Supervised multi-label classification models for fine-grained attribute
detection. (With bold we denote the best performance)

Model Parameters Exact Match Binary Accuracy F1 Macro

EfficientNet-B3 Fine-tuned layers : 140
Learning rate : 1e-4
Batch Size : 64
Dropout rate : 0.5
Optimizer : Adam
Weights : ImageNet
Loss function : BCE

78.23 99.61 74.68

EfficientNet-B4 Fine-tuned layers : 100
Learning rate : 5e-5
Batch Size : 32
Dropout rate : 0.5
Optimizer : Adam
Weights : ImageNet
Loss function : BCE

78.29 99.60 75.97

EfficientNet-B4 Fine-tuned layers : 100
Learning rate : 1e-4
Batch Size : 32
Dropout rate : 0.5
Optimizer : Adam
Weights : Noisy Student
Loss function : BCE

82.15 99.69 81.85

EfficientNet-B4 Fine-tuned layers : 100
Learning rate : 1e-4
Batch Size : 32
Dropout rate : 0.5
Optimizer : Adam
Weights : ImageNet
Loss function : Soft F1

68.27 98.86 52.39

EfficientNet-B4 Fine-tuned layers : 147
Learning rate : 5e-5
Batch Size : 32
Dropout rate : 0.5
Optimizer : AdamW
Weights : Noisy Student
Loss function : BCE

80.63 99.69 80.56

A final attempt to further improve upon the task of Attribute Detection was the
experimentation with supervised contrastive learning [27]. This approach takes advantage
of contrastive training within a fully supervised framework. The model’s training is divided

https://arxiv.org/pdf/2004.11362.pdf

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 55 of 64

into two stages. First a visual encoder is pre-trained with the use of a supervised
contrastive loss function with the objective of bringing image representations of the same
class closer together in an embedding space and mapping them further apart from all
other classes. After that, the pre-trained encoder is freezed, a classification head is added
on top and is trained with the cross entropy loss. The authors showed that supervised
contrastive learning was able to improve the model’s predictive accuracy on ImageNet
while being more ‘robust’ since it required less tuning of hyper-parameters. Our approach
utilized the N-pair loss function modified for a multi-label problem, as offered by
TensorFlow Addons [45]. However, the initial experiments with an EfficientNet-B3 model
with 100 fine-tuned layers during contrastive training yielded a relatively low exact match
score 53.66% and 38.32% F1 macro at best. It could be concluded that either the
particular supervised contrastive framework is not optimal for a multi-label task or that
wildly different hyper-parameters had to be selected. Nevertheless this question is left for
future investigation.

 4.3.1.2.2 Using the DeepFashion dataset

We have also performed a multi-label classification of attributes on the AD:DF dataset.
The rationale behind this experiment was to explore whether the training dataset size and
the relatively large number of classes were a contributing factor in determining the quality
of the predictions in multi-label classification, hence we experimented with the larger
dataset provided by DeepFashion. The Deepfashion dataset with the matched patterns
and styles were split into training, validation and testing in 80:10:10 ratio. In much the
same way as for the AD:MLZ dataset, a multi-label classification was planned for this
experiment. The experiment was carried out with batch sizes and hyperparameter tuning
from the experiments carried out with AD:MLZ dataset for more accurate comparison.

Due to computational limitations, the EfficientNet B4 model was considered for this
experiment as it was the best performer with the multi-label classification on the AD:MLZ
dataset. The input shape of (380,380,3) and a shuffle batch size of 1024 was used for
shuffling the training data by chunks of 1024 observations. The data was autotuned to
adapt preprocessing and prefetching dynamically to reduce the GPU and CPU idle times.
Image augmentation with a factor of 0.1 was used in the training process to randomly
rotate, flip and alter the contrast of the input images. The dropout rate was set at 0.5
throughout the training process. Both ImageNet and Noisy Student pre-trained weights
were used in this experiment. The optimizer used was Adam with different learning rates
(1e-4, 2e-5 and 5e-5), ‘binary_crossentropy’ was used as part of the loss function
throughout this process.

Table 4-18 shows the results of multi-label classification performed with the AD:DF
dataset. It is evident from the results that usage of pre-trained weights from Noisy Student
has resulted in a good accuracy score overall, which was the same in case of AD:MLZ
dataset. However the training process was unstable in this case and it clearly shows that
the model is significantly overfitting. This can be resolved by editing the learning rate
value. It can also be observed from the last model that increasing the fine-tuned layers
results in affecting the performance of the model, which was the case with the experiments
done on the AD:MLZ dataset. Hence, the EfficientNet-B4 model with Noisy-Student
weights with 100 re-trained layers can be considered the best performing one on both the
AD:DF and AD:MLZ dataset.

Table 4-18: Supervised multi-label classification models for fine-grained attribute

detection - AD:DF dataset. (With bold we denote the best performance)

Model Parameters Training accuracy
(in %)

Test dataset
accuracy (in %)

https://www.tensorflow.org/addons/api_docs/python/tfa/losses/npairs_multilabel_loss
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/npairs_multilabel_loss

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 56 of 64

EfficientNet-B4 Fine-tuned layers : 100
Learning rate : 2e-5
Batch Size : 64
Dropout rate : 0.5
Optimizer : Adam
Weights : ImageNet
Loss function : BCE

77.74 71.46

EfficientNet-B4 Fine-tuned layers : 100
Learning rate : 5e-5
Batch Size : 32
Dropout rate : 0.5
Optimizer : Adam
Weights : ImageNet
Loss function : BCE

59.88 62.33

EfficientNet-B4 Fine-tuned layers : 100
Learning rate : 1e-4
Batch Size : 32
Dropout rate : 0.5
Optimizer : Adam
Weights : Noisy Student
Loss function : BCE

91.98 72.79

EfficientNet-B4 Fine-tuned layers : 147
Learning rate : 5e-5
Batch Size : 32
Dropout rate : 0.5
Optimizer : AdamW
Weights : Noisy Student
Loss function : BCE

61.05 64.66

As a point of comparison, FashionNet, proposed in the original DeepFashion paper, was
able to yield mean scores of 40.52% and 54.61% in terms of top-3 and top-5 accuracy
respectively on the Attribute Detection task with 1000 attribute categories involving
textures, fabrics, shapes, parts and styles [3]. More recently Li. et. al., with the use of multi-
task learning, were able to increase the top-3 and top-5 accuracy scores up to 59.83%
and 77.91% on the same dataset; but with cropped images around their annotated
bounding boxes [33]. Re-training the best performing network from AD:MLZ on full
DeepFashion for Attribute Detection showed a restricted performance; with 35.37% top-3
and 44.87% top-5 accuracy. We believe that further experiments with different hyper-
parameter combinations are necessary to improve this outcome, due to the structural
differences between DF and AD:MLZ; the former being more imbalanced and consisting
of 1000 - relatively noisy [46] - attribute classes compared to the 109 of AD:MLZ.

4.3.2 Further work and planned improvements

After extensive experimentation with OpenAI's CLIP and our custom cross-modal image-
text alignment we concluded that this direction, while being interesting from a research
perspective, is not fruitful for further investigation on such a fine-grained task. On the
contrary, after putting in the effort of collecting an annotated dataset, a fully supervised
framework was able to reach relatively high rates of predictive accuracy. The presented
experiments consisted of only two types of attributes, patterns and styles. If considered
useful and necessary for the next stages, this work could be expanded to include more

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 57 of 64

types of attributes such as the garment’s fit or the neckline or sleeve style for upper-body
garments, etc.

For the supervised multi-label classification task, we may consider experimenting with
specialised pairwise ranking techniques shown to improve a model’s predictive accuracy
on multi-label classification [28]. Secondly, hierarchical multi-label classification networks
could be utilized, which are “capable of simultaneously optimizing local and global loss
functions for discovering local hierarchical class relationships and global information from
the entire class hierarchy while penalizing hierarchical violations” [29] in order to avoid
logically impossible combinations on the predicted classes such as predicting more than
one patterns or styles at the same time.

4.4 Merged pipeline and inference

After acquiring the best performing models for each task - object detection, category
classification and the attribute detection, as shown in table 4-19, we merged them into an
integrated pipeline. An image is first passed through the object detection models and the
identified objects are cropped around their predicted bounding boxes. Thereafter, the
cropped images depicting individual garment items were passed through the category and
attribute detection models. The end result is a JSON file reporting the identified objects,
their categories and attributes.

Table 4-19: The best-performing models for each task that constitute the merged
pipeline

Task Model Evaluation Metrics

Object Detection Faster R-CNN mAP : 80.6 AR@100 : 85.8

Category Classification EfficientNet-B4 Accuracy : 92.24 F1 Macro : 92.28

Attribute Detection EfficientNet-B4 Exact Match 82.15 F1 Macro : 81.85

Below we demonstrate a few visualised samples resulting from each step of the merged
pipeline:

Step 1:

The objects are identified by the trained OD model, a sample is shown in Figure 4-9.

Figure 4-9: Prediction from Trained OD model

https://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Improving_Pairwise_Ranking_CVPR_2017_paper.pdf
http://proceedings.mlr.press/v80/wehrmann18a/wehrmann18a.pdf

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 58 of 64

Step 2:

After the identification of objects, the cropping is performed on the desired objects from
the predicted boundary box, as shown below. The predictions from category and attribute
detection trained models are detected during this stage (Figure 4-10).

Figure 4-10: Prediction from Trained CC and AD model
Step 3:

Finally, all the predictions are integrated into a final image with a unique color code (upper
body: red, lower body: blue, full body: green, footwear: orange) for identified objects with
the predictions of categories and its corresponding attributes (Figure 4-11).

Figure 4-11: Final result from the merged pipeline

Below (Figure 4-12) are a few samples resulting from the merged pipeline:

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 59 of 64

Figure 4-12: Sample of pipelines results with predictions

From Figure 4-12, it can be seen that the categories and attributes were accurately
detected. In the top left image the full body dress is detected with ‘a-line’ as attribute which
is supported by the MLZ taxonomy. In the same image the attribute for footwear is
projected as ‘court’, which comes under the ‘heels’ category. The majority of the pattern
attributes apply to all objects, which can be seen in the bottom middle image, where floral
is the attribute and dresses (full-body) as the category.

Though the majority of the results were accurate, there were few instances in which few
attributes were mixed up and there were multiple predictions from the OD model. We
performed heuristics on determining the threshold value of the object detection and in
Figure 4-13 are few examples of before and after the threshold value was fixed to 0.99 for
the OD model:

Before: After:

Figure 4-13: Before and After version of OD threshold value fix

4.5 Implementation

This deliverable is accompanied by a video demonstration of the pipeline architecture, that
shows its performance on a novel set of images (which have been taken from the MLZ
datasets).
The subsequent implementation of the D3.1 model, which is planned for use as a
preliminary step in D3.2 and D3.3 will be carried out using the AWS Sagemaker service,
which allows for easy deployment of an API endpoint.

The service allows for easy re-deploying of models at need, so we plan on carrying out
multiple iterations of the implementation whenever updates are performed, namely when

https://drive.google.com/drive/u/2/folders/1ObpF2MOvhv0FCSeASyNTI4Ohw8Y_31Gm
https://aws.amazon.com/sagemaker/

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 60 of 64

the detection of new attributes will be possible and stronger heuristics for wrong
classifications will be solidified.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 61 of 64

5. Conclusions

The objective of the current deliverable was to extract detailed patterns from fashion
imagery. Said patterns are to be used in subsequent work to detect the specific content of
images, which will work as features for the forecasting of fashion trends and
recommendation systems. To build systems capable of extracting patterns, we developed
a hierarchical architecture that utilized deep machine learning models for object detection,
category classification and fine-grained attribute detection. The employed pipeline
receives fashion imagery and firstly detects the items present in the image, their location
and their high-level class. Afterwards, the detected items are cropped around their
predicted bounding boxes and the cropped images are passed through a category
classifier and finally to a fine-grained attribute detection model. The end result is a JSON
file that contains the classes of all the items present in the original image classified in mid-
level categories and low-level attributes related to patterns and styles.

On the technical side, central inquiries for this work package involved the retrieval of
correctly labeled datasets, handling the issue of class imbalance, identifying the best
strategies for pre-processing and augmenting fashion imagery and the careful tuning of
the deep learning model’s hyper-parameters. For all three tasks on the hierarchical
pipeline, transfer learning techniques were utilized, based on state-of-the-art deep
learning models pre-trained on large-scale datasets and fine-tuned on custom datasets.
We performed comparative studies between various models, while carefully tuning their
hyper-parameters. Furthemore, apart from experimenting on MLZ’s own datasets, we
performed experiments on DeepFashion, a publicly available and widely used fashion-
related dataset, for the sake of comparability and reproducibility. On the category
classification and attribute detection tasks we experimented with cross-modal image to
text alignment methodologies, which would alleviate the need for collecting manually
labeled datasets. These experiments, while promising on the category classification task,
had severe limitations on the fine-grained attribute detection task, and were outperformed
by fully-supervised models.

After extensive experimentation the developed pipeline consists of the highest performing
fine-tuned models for each task. More specifically, the Faster-RCNN model for the object
detection with a mAP score of 80.6, the Efficient-B4 multi-class model for the category
classification with 92.24 accuracy and the EfficientNet-B4 multi-label model for the
attribute detection with 82.15 categorical accuracy score, were selected, all trained and
evaluated on their respective MLZ dataset (see table 4-19). The extracted classes or the
dense embeddings from the aforementioned models are going to be utilized, along with
other fashion-related features, during the next phases of the program, namely the
forecasting of fashion trends and the recommendation systems of garment items and we
deem the aforementioned performances to be sufficient for these tasks. Each of the three
tasks can benefit from further work in the preparation of larger and cleaner datasets for
training, in the modelling and in the heuristics applied after the fact to eliminate wrong
results, but due to the inherent ambiguity existing in fashion, we are satisfied with the
results achieved so far and as specified in the implementation subsection, this pipeline
will be implemented in an iterative process that allows for re-deployment whenever
improvements are ready to be inserted.

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 62 of 64

6. References

1. B Quintino Ferreiro, J Faria, L Baía, R Gamelas Sousa, A Unified Model with
Structured Output for Fashion Images Classification, KDD workshop on AI for
fashion, 2018

2. A Cardoso, F Daolio, S Vargas, Product Characterisation towards
Personalisation, Proceedings of the 24th ACM SIGKDD International Conference
on knowledge discovery & data mining, 2018

3. Z Liu et al., DeepFashion: Powering Robust Clothes Recognition and
Retrieval with Rich Annotations, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016

4. Y Ge et al., DeepFashion2: a Versatile Benchmark for Detection, Pose
Estimation, Segmentation and Re-Identification of Clothing Images, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019

5. S Guo et al., The iMaterialist Fashion Attribute Dataset, IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), 2019

6. A Yu, K Grauman, Fine-Grained Visual Comparisons with Local Learning,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014

7. A Yu, K Grauman, Semantic Jitter: Dense Supervision for Visual Comparisons
via Synthetic Images, IEEE International Conference on Computer Vision
(ICCV), 2017

8. X Zou et al., FashionAI: A Hierarchical Dataset for Fashion Understanding,
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2019

9. B Thomee et al., YFCC100M: The New Data in Multimedia Research,
Communications of the ACM, 59(2), 2016

10. K Yamaguchi at al., Parsing Clothing in Fashion Photographs, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2012

11. S Zheng et al., ModaNet: A Large-Scale Street Fashion Dataset with Polygon
Annotations,Proceedings of the 26th ACM international conference on
Multimedia (MM '18), 2018

12. B Zoph et al., Learning data augmentation strategies for object detection,
Lecture Notes in Computer Science, Springer, 2020

13. N S Manikandan, K Ganesan, Deep Learning based automatic video
annotation tool for self-driving car, preprint, 2019

14. T-Y Lin et al., Microsoft: Common Objects in Context, ECCV 2014, Lecture
Notes in Computer Science, 2014

15. S Ren et al, Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017

16. F Charte et al., Concurrence among Imbalanced Labels and Its Influence on
Multilabel Resampling Algorithms, International Conference on Hybrid Artificial
Intelligence Systems (HAIS) 2014, 2014

17. G Hinton et. al., Neural Networks for Machine Learning, lecture notes

18. J Deng et al., ImageNet: A large scale hierarchical image database, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009

19. A Radford et al., Learning Transferable Visual Models from Natural Language
Supervision, preprint, 2021

20. C Jia at al., Scaling Up Visual and Vision-Language Representation Learning With
Noisy Text Supervision, preprint, 2021

21. J Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding, Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL-HTL) 2019, 2019

https://arxiv.org/pdf/1806.09445v1.pdf
https://arxiv.org/pdf/1806.09445v1.pdf
https://arxiv.org/pdf/1803.07679.pdf
https://arxiv.org/pdf/1803.07679.pdf
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1906.05750
http://aronyu.io/vision/papers/cvpr14/aron-cvpr14.pdf
http://aronyu.io/vision/papers/iccv17/aron-iccv17.pdf
http://aronyu.io/vision/papers/iccv17/aron-iccv17.pdf
https://openaccess.thecvf.com/content_CVPRW_2019/papers/FFSS-USAD/Zou_FashionAI_A_Hierarchical_Dataset_for_Fashion_Understanding_CVPRW_2019_paper.pdf
https://arxiv.org/abs/1503.01817
http://vision.is.tohoku.ac.jp/~kyamagu/papers/yamaguchi_cvpr2012.pdf
https://arxiv.org/pdf/1807.01394.pdf
https://arxiv.org/pdf/1807.01394.pdf
https://arxiv.org/abs/1906.11172v1
https://arxiv.org/ftp/arxiv/papers/1904/1904.12618.pdf
https://arxiv.org/ftp/arxiv/papers/1904/1904.12618.pdf
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://link.springer.com/chapter/10.1007/978-3-319-07617-1_10
https://link.springer.com/chapter/10.1007/978-3-319-07617-1_10
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://ieeexplore.ieee.org/document/5206848
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 63 of 64

22. F Faghri et al., VSE++: Improving Visual-Semantic Embeddings with Hard
Negatives, Proceedings of the British Machine Vision Conference (BMVC), 2018

23. H Diao et al., Similarity Reasoning and Filtration for Image-Text matching,
preprint, 2021

24. R Yacouby, D Axman, Probabilistic Extension of Precision, Recall, and F1
Score for More Thorough Evaluation of Classification Models, EMNLP 2020
Workshop on Evaluation and Comparison of NLP Systems (Eval4NLP), 2020

25. E Eban et al., Scalable Learning of Non-Decomposable Objectives,
Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, 2017

26. Q ZIe et al., Self-training with Noisy Student improves ImageNet
classification, Conference on Computer Vision and Pattern Recognition (CVPR),
2020

27. P Koshla et al., Supervised Contrastive Learning, Advances in Neural
Information Processing Systems 22 (NeurIPS 2020), 2020

28. Y Li et al., Improving Pairwise Ranking for Multi-label Image Classification,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017

29. J Wehrmann et al., Hierarchical Multi-label classification networks,
Proceedings of the 35th International Conference on Machine Learning, PMLR
80:5075-5084, 2018

30. F Charte et al. Tips, guidelines and tools for managing multi-label datasets:
The mldr. datasets R package and the Cometa data repository.
Neurocomputing 289 (2018): 68-85.

31. S Sadegharmaki et al., FashionGraph: Understanding fashion data using scene
graph generation, International Conference on Pattern Recognition (ICPR), 2020

32. K Gong, Instance-level Human Parsing via Part Grouping Network, European
Conference on Computer Vision (ECCV), 2018

33. Li, Peizhao, et al. Two-stream multi-task network for fashion recognition, 2019
IEEE International Conference on Image Processing (ICIP). IEEE, 2019.

34. Sidnev, Alexey, et al. Deepmark++: Real-time clothing detection at the edge,
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. 2021.

35. L TzuTa Lin. LabelImg - graphical image annotation tool and label object
bounding boxes in images. 2018, https://github.com/tzutalin/labelImg

36. FC John. The Canny edge detector. 1986,
https://en.wikipedia.org/wiki/Canny_edge_detector

37. Amazon SageMaker Ground Truth. 2021,
https://aws.amazon.com/sagemaker/groundtruth/

38. J. Alexander. Image augmentation in machine learning. 2020,
https://imgaug.readthedocs.io/en/latest/

39. R Vivek. Training and Evaluation with TensorFlow 2. 2020,
https://github.com/tensorflow/models/blob/master/research/object_detection/g3do
c/tf2_training_and_evaluation.md

40. Z Nick. An Introduction to Evaluation Metrics for Object Detection. 2018,
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-
metrics-for-object-detection/

41. S Yiming. TensorFlow 1 Detection Model Zoo. 2020,
https://github.com/tensorflow/models/blob/master/research/object_detection/g3do
c/tf1_detection_zoo.md

42. B Vighnesh. TensorFlow 2 Detection Model Zoo. 2021,
https://github.com/tensorflow/models/blob/master/research/object_detection/g3do
c/tf2_detection_zoo.md

43. Transfer learning and fine-tuning. 2020,
https://www.tensorflow.org/tutorials/images/transfer_learning#fine_tuning

https://arxiv.org/abs/1707.05612
https://arxiv.org/abs/1707.05612
https://arxiv.org/abs/2101.01368
https://www.aclweb.org/anthology/2020.eval4nlp-1.9.pdf
https://www.aclweb.org/anthology/2020.eval4nlp-1.9.pdf
http://proceedings.mlr.press/v54/eban17a/eban17a.pdf
https://arxiv.org/pdf/1911.04252.pdf
https://arxiv.org/pdf/1911.04252.pdf
https://arxiv.org/pdf/2004.11362.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Improving_Pairwise_Ranking_CVPR_2017_paper.pdf
http://proceedings.mlr.press/v80/wehrmann18a/wehrmann18a.pdf
https://www.sciencedirect.com/science/article/pii/S0925231218301401?casa_token=RSAZ-9dnGnEAAAAA:2RG4ajg6Xpz-yCrxZSWBTTisFFulpx4qiTUOmjbcEJUKinc_suQ046x3ol5kr-XxRAnNw0krgg
https://www.sciencedirect.com/science/article/pii/S0925231218301401?casa_token=RSAZ-9dnGnEAAAAA:2RG4ajg6Xpz-yCrxZSWBTTisFFulpx4qiTUOmjbcEJUKinc_suQ046x3ol5kr-XxRAnNw0krgg
https://www.sciencedirect.com/science/article/pii/S0925231218301401?casa_token=RSAZ-9dnGnEAAAAA:2RG4ajg6Xpz-yCrxZSWBTTisFFulpx4qiTUOmjbcEJUKinc_suQ046x3ol5kr-XxRAnNw0krgg
https://www.sciencedirect.com/science/article/pii/S0925231218301401?casa_token=RSAZ-9dnGnEAAAAA:2RG4ajg6Xpz-yCrxZSWBTTisFFulpx4qiTUOmjbcEJUKinc_suQ046x3ol5kr-XxRAnNw0krgg
https://ieeexplore.ieee.org/abstract/document/9412662
https://ieeexplore.ieee.org/abstract/document/9412662
https://openaccess.thecvf.com/content_ECCV_2018/html/Ke_Gong_Instance-level_Human_Parsing_ECCV_2018_paper.html
https://ieeexplore.ieee.org/abstract/document/8803394
https://openaccess.thecvf.com/content/WACV2021/papers/Sidnev_DeepMark_Real-Time_Clothing_Detection_at_the_Edge_WACV_2021_paper.pdf
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://en.wikipedia.org/wiki/John_F._Canny
https://en.wikipedia.org/wiki/Canny_edge_detector
https://aws.amazon.com/sagemaker/groundtruth/
https://imgaug.readthedocs.io/en/latest/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_training_and_evaluation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_training_and_evaluation.md
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://www.tensorflow.org/tutorials/images/transfer_learning#fine_tuning

D3.1 Pattern Recognition on Fashion Imagery eTryOn-951908

Filename: eTryOn_D3.1_final.docx Page 64 of 64

44. M Ashref.The Unknown Benefits of using a Soft-F1 Loss in Classification
Systems. 2019,
https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-
classification-systems-753902c0105d

45. Tensorflow Addons. 2021,
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/npairs_multilabel_l
oss

46. Shi, Mengyun, et al. "The exploration of artificial intelligence application in
fashion trend forecasting." Textile Research Journal (2021):
00405175211006212.

https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/npairs_multilabel_loss
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/npairs_multilabel_loss
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/npairs_multilabel_loss
https://journals.sagepub.com/doi/full/10.1177/00405175211006212
https://journals.sagepub.com/doi/full/10.1177/00405175211006212

