
 

eTryOn - Virtual try-ons of garments enabling novel human 
fashion interactions 

 

 

Project Title: eTryOn - Virtual try-ons of garments enabling novel 
human fashion interactions 

Contract No: 951908 - eTryOn 

Instrument: Innovation Action 

Thematic Priority: H2020 ICT-55-2020 

Start of project: 1 October 2020 

Duration: 24 months 

 

 

Deliverable No: 3.1 

Pattern Recognition on Fashion Imagery 

 
Due date of 
deliverable: 

31 May 2021 

Actual submission 
date: 

4 June 2021 

Version: Final 

Main Authors: Stefanos Papadopoulos (CERTH), Martina Pugliese (MLZ), 
Manjunath Sudheer (MLZ), Delphine Rabiller (MLZ), 
Christos Koutlis (CERTH), Symeon Papadopoulos (CERTH) 

 

 

 

 

 

Project funded by the European Community under the 
H2020 Programme for Research and Innovation. 

 
 

 

 

 

  



D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 2 of 64 

Deliverable title Pattern Recognition on Fashion Imagery 

Deliverable number 3.1 

Deliverable version Final 

Contractual date of 
delivery 

31 May 2021 

Actual date of delivery 4 June 2021 

Deliverable filename eTryOn_D3.1_final.docx 

Type of deliverable Demonstrator 

Dissemination level PU 

Number of pages 64 

Work package WP3 

Task(s) T3.1 

Partner responsible MLZ, CERTH 

Author(s) Stefanos Papadopoulos (CERTH), Martina Pugliese (MLZ), 
Manjunath Sudheer (MLZ), Delphine Rabiller (MLZ), 
Christos Koutlis (CERTH), Symeon Papadopoulos (CERTH) 

Editor Elisavet Chatzilari (CERTH) 

Reviewer(s) Thomas De Wilde (QC) 

 

 

Abstract This deliverable prototypes a Machine Learning pipeline for 
the detection of categories and attributes within fashion 
imagery as well as the plans for the implementation 
backbone. 

Keywords machine learning, artificial intelligence, object detection, 
classification, fashion category, fashion attribute 

 

  



D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 3 of 64 

Copyright  
  

© Copyright 2020 eTryOn Consortium consisting of:  

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH) 
2. QUANTACORP (QC) 
3. METAIL LIMITED (Metail) 
4. MALLZEE LTD (MLZ) 
5. ODLO INTERNATIONAL AG (ODLO) 

 

This document may not be copied, reproduced, or modified in whole or in part for any 
purpose without written permission from the eTryOn Consortium. In addition to such 
written permission to copy, reproduce, or modify this document in whole or part, an 
acknowledgement of the authors of the document and all applicable portions of the 
copyright notice must be clearly referenced.  

  

All rights reserved.  

 



D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 4 of 64 

Deliverable history   

 

Version Date Reason Revised by 

0.1 06/04/2021 Table of Contents Martina Pugliese (MLZ) 

0.2 23/04/2021 First draft 
Martina Pugliese (MLZ), Manjunath 
Sudheer (MLZ), Delphine Rabiller 
(MLZ) 

0.3 26/04/2021 
Comments and 
suggestions 

Christos Koutlis (CERTH) 

0.4 29/04/2021 
Most content added by 
both teams 

Stefanos Papadopoulos (CERTH), 
Martina Pugliese (MLZ), Manjunath 
Sudheer (MLZ), Delphine Rabiller 
(MLZ) 

0.5 12/05/2021 Beta version 

Stefanos Papadopoulos (CERTH), 
Martina Pugliese (MLZ), Manjunath 
Sudheer (MLZ), Delphine Rabiller 
(MLZ), Christos Koutlis (CERTH), 
Symeon Papadopoulos (CERTH) 

0.6 26/05/2021 Comments by QC Thomas De Wilde(QC) 

0.7 28/05/2021 Revised version 

Stefanos Papadopoulos (CERTH), 
Martina Pugliese (MLZ), Manjunath 
Sudheer (MLZ), Delphine Rabiller 
(MLZ), Christos Koutlis (CERTH), 
Symeon Papadopoulos (CERTH) 

1.0 31/05/2021 Final version 

Stefanos Papadopoulos (CERTH), 
Martina Pugliese (MLZ), Manjunath 
Sudheer (MLZ), Delphine Rabiller 
(MLZ), Christos Koutlis (CERTH), 
Symeon Papadopoulos (CERTH) 

1.1 02/06/2021 Final edited version Elisavet Chatzilari (CERTH) 

  



D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 5 of 64 

List of abbreviations and Acronyms 

 

Abbreviation Meaning 

B2C Business-to-consumer 

DF DeepFashion (dataset) 

MLZ Mallzee 

R-CNN Region Based Convolutional Neural Networks 

mAP Mean average precision 

OD Object detection 

CC Category classification 

AD Attributes detection 

VR Virtual reality 

API Application Programming Interface 

TF TensorFlow 

WP Work package 

AR Average recall 

RMSprop Root Mean Square Propagation 

COCO The Common Objects in Context (dataset) 

CLIP Contrastive Language-Image Pre-Training 

NLP Natural language processing 

DoA Description of Action 



D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 6 of 64 



D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 7 of 64 

● Table of Contents 

 

● Table of Contents 7 

1. Executive Summary 9 

2. Introduction 10 

2.1 Applications within the fashion domain 11 

2.1.1 Applications within eTryOn 11 

2.1.2 Applications for the fashion industry 12 

2.2 Structure of the report 12 

3. Datasets gathering and evaluation 13 

3.1 The MLZ taxonomy of clothes 13 

3.2 Datasets research and creation 14 

3.2.1 Object detection phase 17 

3.2.1.1 Manually annotated images (by MLZ and CERTH) 17 

3.2.1.2 Images annotated via AWS Sagemaker Groundtruth 19 

3.2.1.3 Data augmentation and final count of annotated objects 20 

3.2.1.4 Gold standard dataset of images 21 

3.2.1.5 Datasets naming convention used in the text for object detection 22 

3.2.2 Category classification phase 22 

3.2.2.1 The MLZ dataset of category images 22 

3.2.2.2 Datasets naming convention used in the text for category classification 24 

3.2.3 Attributes detection phase 24 

3.2.3.1 The MLZ dataset of images with attributes 24 

3.2.3.2 The DeepFashion dataset of images with attributes 27 

3.2.3.3 Datasets naming convention used in the text for attributes detection 27 

4. Illustration of the pipeline architecture 29 

4.1 Object detection phase 30 

4.1.1 Model building and evaluation 30 

4.1.1.1 Using the DeepFashion dataset 30 

4.1.1.2 Using the DeepFashion 2 dataset 32 

4.1.1.3 Using the MLZ dataset 35 

4.1.2 Planned improvements 37 

4.2 Category classification phase 38 

4.2.1 Model building and evaluation 39 

4.2.2 Planned improvements 48 

4.3 Attributes detection phase 48 

4.3.1 Model building and evaluation 48 



D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 8 of 64 

4.3.1.1  Cross-modal Vector Alignment for Image-Text pairs 48 

4.3.1.2 Multi-label supervised classification 53 

4.3.1.2.1 Using the MLZ dataset 53 

4.3.1.2.2 Using the DeepFashion dataset 55 

4.3.2 Further work and planned improvements 56 

4.4 Merged pipeline and inference 57 

4.5 Implementation 59 

5. Conclusions 61 

6. References 62 

 



D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 9 of 64 

1. Executive Summary 

 

eTryOn’s WP3 focuses on building systems to extract information from fashion imagery 
and then use these on the large datasets of product ratings MLZ owns to perform trend 
detections and give recommendations to users. The work package (WP) is machine 
learning-oriented and will build reusable software that can be utilised as SDK for a 
multiplicity of purposes. This report tackles the first part of the work, namely the creation 
of models that automatically extract detailed semantic information from fashion images. 
After this stage, further models will be developed that will use this information for the 
detection of trends in the fashion market and the matching of user preferences to products 
for recommendations. 

This deliverable describes the research work carried out by the teams involved in WP3 
(MLZ, CERTH), ranging from the generation and design of appropriate datasets to the 
machine learning methods developed based on them. It is also accompanied with a video 
showcasing the results of the presented work1. 

 

 
11 https://www.youtube.com/watch?v=Pm_kqbb5jaY&ab_channel=eTryOnProject  

https://www.youtube.com/watch?v=Pm_kqbb5jaY&ab_channel=eTryOnProject
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2. Introduction 

 

In the realm of e-commerce fashion, imagery is a key component: consumers judge 
products based on how they look, often taking snap decisions. Many retailers invest large 
resources in creating good, highly professional photography for their products in order to 
elicit the best possible sales response. 

MLZ offers B2C apps (both mobile and web-based) for consumers to discover, judge and 
purchase fashion products (clothes, shoes and accessories). It is in possession of a large 
dataset of consumer opinions on fashion products, dating back several years and has 
done extensive exploratory work on how the content and the quality of fashion 
photography influences sales.  

The MLZ ratings datasets consist of “positive” and “negative” opinions consumers have 
expressed on fashion products using various features of the app(s). Users can swipe on 
items, hence expressing a like or dislike, but they can also visualise them in a grid screen, 
explore their details, and buy them. All these behavioural hints, often composing funnels 
(e.g. user searching for products with the search feature, visualising results in a grid and 
exploring the details of the most promising ones) constitute the main data asset MLZ owns 
and uses to perform market research and predictions. The dataset is unique in its volume 
and historical aspect, as well as the fact that it has been gathered in a genuine way: users 
are not paid to express opinions and the apps are freely available to anyone, hence data 
comes from large and differentiated sectors of the population without incentive-based 
mechanisms. 

Given the variety of product offers in fashion, many factors can impact consumers’ 
reactions and the eventual performance of items in the market. Items vary in category, 
colour, shape, patterns and general appearance, as well as style-independent factors 
such as price and brand. Furthermore, the way an item is presented may non-trivially 
affect consumer perception. For instance, the use of (human) models to display fit and 
general look can provide visual information that a flat-lay photography cannot convey, and 
this may matter more for certain categories than others (e.g., those which are more fit-
critical, such as bottoms and dresses). The background against which the photo is taken 
can also have an impact. An important element to consider is whether the product is shown 
on its own or in conjunction with others (a model displaying it as part of a full outfit). 

For all these reasons, it is critical to base prediction and recommendation engines on 
information extracted directly from the fashion imagery and not just the metadata and text 
accompanying items. As a matter of fact, the text retailers use to describe their items can 
often be incomplete or lack important details, if not outright uninformative and, as such, it 
cannot be relied upon for such a task.  

This deliverable is aimed at building a system capable of extracting detailed information 
from retail images, outlining all the content in the picture to the best possible accuracy, 
and of automatically tagging content with clothing category and a detailed set of attributes. 
This system is structured in a pipeline of hierarchical information extraction (see section 
4), where each step is run on the output of the previous one but is also usable 
independently.  

Due to the complexity of the task, these systems normally use deep neural networks, an 
area of machine learning which in recent times has proved its effectiveness for many tasks 
(for example: object detection, clothing attribute predictions, fashion style predictions and 
recommendations) and is nowadays being increasingly adopted in many areas.  

The development of this system has many potential applications, within the scope of the 
eTryOn project, but also more broadly outside of it. While software that performs 
information extraction from images is not a new field of work, the use of it within a 
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specialised domain, such as fashion, is at the forefront of innovation. Several fashion 
companies are researching this space for use to their own advantage [1, 2]. Challenges 
in tailoring the use of machine learning for a specific domain lie in both the creation of 
adequate datasets for the training of models and in the choice and fine-tuning of 
appropriate models. Both these components require research and development work due 
to the lack of commercially available data regarding the fashion domain. Our work aims at 
taking part in the innovation in these areas, contributing to the scientific community as well 
as creating software for the stakeholders in the project that has the potential to also be 
offered commercially to external clients. 

For our research, we have utilised existing (public) datasets as well as datasets we have 
built ourselves starting from imagery, metadata and textual information owned by MLZ. 
These specialised training datasets, created for the purposes of this project, constitute per 
se new Intellectual Property the company can use for a variety of reasons and we will 
describe the methodologies we used to create them in section 3. 

Deliverable D3.1 constitutes research and development work that will function as the 
technical basis and prerequisite for deliverables D3.2 (fashion trend detection) and D3.3 
(recommendation engine to users). The models developed in D3.1 will be applied on the 
large dataset of images MLZ owns to extract information. The coupling of this information 
with the MLZ dataset of users’ opinions on fashion products, will provide the basis for the 
other deliverables. On the MLZ apps, users interact with products primarily by evaluating 
their images, hence being able to know what exactly is present in an image the user has 
interacted with is essential to be able to interpret the ratings and use them to train 
prediction models. 

 

The models developed in this deliverable could benefit from improvements and 
expansions we will describe in the text, but is considered quite satisfactory as a basis for 
the subsequent deliverables: subsection 4.4 summarizes the performance achieved. 

 

2.1 Applications within the fashion domain 
 

This subsection describes the many potential applications of our work, both within the 
scope of the eTryOn project and outside of it. 

2.1.1 Applications within eTryOn 
 

eTryOn aims at developing three applications focusing on virtual try-ons of clothing. All 
these applications will require input from WP3, namely: 

● for the VR designer app, whose users will be fashion designers interested in 
developing new designs, WP3 will provide information about how popular a certain 
design is in the market,  

● for the social (influencers) app and for the ecommerce app, WP3 will provide a 
score of how “recommended” a product is for the user, and possibly, also how 
popular it is in the market (as for the designers app) 

This deliverable will provide the prerequisite step to train models to understand clothing 
details from a fashion image, which will be furnished at API endpoints as part of the 
implementation of said eTryOn applications 

https://arxiv.org/pdf/1806.09445v1.pdf
https://arxiv.org/pdf/1803.07679.pdf
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2.1.2 Applications for the fashion industry 
 

The work developed in this deliverable has the potential to be applied outside of the 
framework of the eTryOn project.  

The datasets created as part of this deliverable may be per se offered as a commercial 
component to train models upon. Additionally, a system that extracts information from 
fashion imagery can be packaged as its own offering for fashion companies willing to tag 
their photography with attributes. 

 

Such a system could be used for a multiplicity of uses, such, for example: 

● a catalogue search feature based on the imagery (visual search); 
● a mechanism to perform product similarity based on the images, that can be used 

for retrieval of similar products to the one at hand; 
● mechanisms to assess the quality and completeness of e-commerce photography 

(e.g., measuring how often t-shirts are shown in flat-lay vs. in full outfit - alongside 
which other items - and recommending the best option). 

 

2.2 Structure of the report 
 

The teams involved in this work (MLZ, CERTH) have devoted effort to building the large 
training datasets of machine learning models, and to the research and realisation of said 
models. Section 3 will outline the work performed in the creation and quality-check of novel 
datasets, while also noting the inherent difficulties that arose in the process. 

Section 4 will summarise all results achieved in the machine learning modelling phase, 
highlighting strengths and weaknesses of the models developed and planned strategies 
for improvements.  

Section 5 will discuss the implementation of this research, section 6 outlines the authors’ 
conclusions and section 7 reports the scientific references used in this work. 
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3. Datasets gathering and evaluation 
 

In order to train models, the problem of gathering appropriate datasets has been tackled. 
This section will describe the work performed in order to obtain quality datasets, which 
has occupied a fair amount of time and effort. The datasets created so far are not 
comprehensive of everything in fashion, but a structured procedure to extend them to 
missing categories and details is in place and can be utilised. 

3.1 The MLZ taxonomy of clothes 
 

The world of e-commerce fashion is very prone to ambiguity in the way clothes are 
described, and there are no standards for the categorisation of items into groups. Different 
retailers may not only give different names to the same item, but, more importantly, 
categorise the same kinds of items under different groups. An obvious example appears 
with women's footwear, where summer heeled shoes can be sometimes placed under 
“heels” and sometimes under “sandals”, but the issue remains for any kind of category 
and item. 

MLZ worked around the problem by creating its own “fashion taxonomy”, where categories 
of clothing items are hierarchically structured and dependencies of attributes are clarified. 
Said taxonomy has been created by a mixture of domain knowledge in fashion and a 
statistical analysis of the market data (product information gathered from brands’ 
websites) the company owns.  

In Figure 3-1, we furnish an example structure from the MLZ taxonomy, to illustrate the 
concept. The example is for upper-body (tops) clothing and shows the hierarchical 
structure in the taxonomy, with categories at the top of the graph, types (or sub-categories) 
at the following level and styles following. 
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Figure 3-1: Example of the MLZ taxonomy for upper-body clothes. 

 

The MLZ taxonomy has been the standard used during the work carried out in this 
deliverable, in the sense that categories and attributes in the training sets have been 
derived using the hierarchical structures outlined in the taxonomy itself.  

3.2 Datasets research and creation 
 

The pipeline model has been designed to work as a succession of stages: 

1. a first stage (object detection) will detect objects within the image: upper-body, 
lower-body, full-body, footwear 

2. a second stage (category classification) will classify each object individually as 
belonging to a certain clothing category 

3. a third stage (attributes tagging) will tag the object with finer-grained information 
from clothing attributes (e.g. the pattern and the style of the garment) 
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Figure 3-2: The various stages of the model pipeline. 

 

Each of these stages, illustrated in Figure 3-2, has required a specific dataset.  

 

We have conducted research with regards to what datasets are already available. There 
are a few that companies and research institutions have created while performing similar 
lines of research. They are normally free to use but under a licence that does not 
encompass commercial exploitation. One such dataset is the first and second version of 
DeepFashion [3, 4] (it is also the most well known comprehensive dataset built for fashion 
clothes classification and tagging as of now). We have used both at various stages of our 
work for research purposes. Other existing datasets have been deemed less interesting 
or too incomplete. Table 3-1 summarises the public datasets that we researched and 
explored for this work, the purpose of using these datasets has been purely exploratory 
and to draft comparisons with the results obtained with MLZ datasets. Note that in order 
to make use of datasets other than MLZ ones, we had to remap categories and attributes 
to the MLZ taxonomy, because of the non-universality and lack of standards. 

 

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
https://github.com/switchablenorms/DeepFashion2
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Table 3-1: Public datasets used for exploratory and comparison work in our 
research. 

Dataset Description Positives Negatives How we used 
it 

DeepFashion, 
first version 
[3] 

~800,000 
images labelled 
for 50 
categories, 
1,000 attributes, 
bounding boxes 

large set and 
large variety, 
presence of 
bounding 
boxes 

lacks footwear, 
some attributes 
are actually 
categories 
(e.g., “shirt”, 
“cami”), 
bounding 
boxes are only 
for one of the 
objects at a 
time 

Training the 
detection of 
objects and the 
classification of 
categories 

DeepFashion, 
second 
version [4] 

~490,000 
images labelled 
for 13 
categories, 
bounding boxes 
and more 

large variety 
and detailed 
information, 
bounding 
boxes are 
annotated for 
all objects in a 
picture 

lacks footwear, 
categories 
used are 
difficult to map 
to MLZ ones 

Training the 
detection of 
objects 

iMaterialist [5] ~1 million 
images tagged 
for fashion 
attributes 

large set and 
large variety, 
does not have 
explicit licence 
constraints  

large number 
of wrong labels 

No easy 
mapping to 
MLZ categories 
and large error 
rates, so did 
not use 

Zappos [6, 7] ~50,000 images, 
only footwear 

large set of 
footwear 
images 

only flat-lay 
images and in 
the same pose 

Used as 
footwear 
dataset for 
object 
detection 
(using other 
sets for non-
footwear), but 
because of the 
specific pose 
the results 
were not good 
enough 

  

 

On top of these, we have considered some more datasets for potential exploratory use: 

● FashionAI [8]: we could not get access to the dataset after requesting it, this would 
have potentially been a useful dataset due to the hierarchical categorization of 
garments; 

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
https://github.com/switchablenorms/DeepFashion2
https://github.com/switchablenorms/DeepFashion2
https://github.com/switchablenorms/DeepFashion2
https://arxiv.org/abs/1901.07973
https://github.com/visipedia/imat_fashion_comp
https://arxiv.org/abs/1906.05750
http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
http://aronyu.io/vision/papers/cvpr14/aron-cvpr14.pdf
http://aronyu.io/vision/papers/iccv17/aron-iccv17.pdf
https://openaccess.thecvf.com/content_CVPRW_2019/papers/FFSS-USAD/Zou_FashionAI_A_Hierarchical_Dataset_for_Fashion_Understanding_CVPRW_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPRW_2019/papers/FFSS-USAD/Zou_FashionAI_A_Hierarchical_Dataset_for_Fashion_Understanding_CVPRW_2019_paper.pdf
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● YFCC100 [9]: very general dataset not related to any specific domain, that would 
create noisy data when filtered; 

● Fashionista [10]: rich dataset that contains very detailed information including 
polygons around clothes, bounding boxes could be reconstructed with the code 
provided but this was not deemed worth doing for exploration reasons; 

● ModaNet [11]: dataset of polygonal annotations around clothes, bounding boxes 
could be reconstructed but this was not deemed worth doing for exploration 
reasons. 

 

Because of the licencing limitations of existing public datasets as well as the fact that MLZ 
is interested in having its own training sets as intellectual property in order to be able to 
commercialize the results of this work, we have decided to also create training datasets 
based on MLZ products. Furthermore, the subsequent deliverables will use MLZ rating-
image pairs, and the information extraction system from this deliverable will be run on MLZ 
imagery. Hence, for the consistency of datasets it is better to train models on MLZ datasets 
too. Also as described in the DoA, WP3 focuses on the use of datasets owned by MLZ, 
so we have worked specifically using those. Other datasets have been explored for 
comparison and investigation purposes. 

 

Note that the main focus of our research has been on clothes, so we have left out the 
category of accessories. The latter, would have posed specific challenges to both the data 
gathering phase and the modelling one, due to the enormous difference in shapes. 

3.2.1 Object detection phase 
 

The object detection stage is rather time-consuming in terms of creating a reliable dataset 
from scratch. That is because the training images need to be not only tagged for their 
content but also annotated with the bounding boxes around said content. However, in our 
case it proved to be the most effective way to generate good datasets. In the following, 
we will explain our procedure and experiments. 

 

 3.2.1.1 Manually annotated images (by MLZ and CERTH) 

MLZ had worked in the past on this topic and it suggested to participants in this deliverable 
to split the work of manual image annotation with bounding boxes. For the task, we chose 
the labelImg tool [35] (open-source), due to its ease of use and intuitive interface. The tool 
allows a user to quickly draw a bounding box around the desired object in an image and 
to save the data. 

The images to annotate have been retrieved from the MLZ databases by querying for them 
under category constraints (e.g., avoiding accessories) and randomising sets to ensure 
that no parameter is over-represented (e.g. one brand, which might negatively impact 
model performance because they might privilege images/poses of a certain kind). 
Products in the MLZ database indeed contain, amongst other things, tags for their 
category and their brand. The category is extracted from the name using NLP modeling 
which however suffers from mistakes due to uninformative names and general model 
performance. We ensured that our data pulls excluded any unwanted categories (for 
example: swimwears, accessories) and mitigated the overwhelming presence of a few 
brands by introducing 

http://projects.dfki.uni-kl.de/yfcc100m/browse?q=shoe&adj=&m=i
https://arxiv.org/abs/1503.01817
http://vision.is.tohoku.ac.jp/~kyamagu/research/clothing_parsing/
http://vision.is.tohoku.ac.jp/~kyamagu/papers/yamaguchi_cvpr2012.pdf
https://github.com/eBay/modanet
https://arxiv.org/pdf/1807.01394.pdf
https://github.com/tzutalin/labelImg
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Of course, in doing the annotations we had made sure to have a balance of the four types 
of objects. We gave ourselves simple but strict rules about how to perform the annotations: 

● annotating objects only when fully present in the picture, and leaving those where 
the garment is not fully visible (e.g. when an image in upper-body also shows part 
of the trousers or when shoes are partly covered) 

● annotate coats and jacket as upper-body objects 

Figure 3-3 illustrates a couple of examples of images manually annotated by the teams. 

 

 

Figure 3-3: Examples of manually annotated images for object bounding boxes. 

 

As specified, MLZ images like any collection of fashion images can present the products 
both in a flat-lay manner (only the product is present) or with a person modelling it 
(potentially other products are present too). For this reason, we decided to annotate a set 
which is balanced in the presence of flat-lay and non flat-lay ones. 

The flat-lay images can be quickly annotated for the bounding box by using a simple 
computer vision mechanism, so they do not require human annotation. The mechanism 
we used is based on edge detection (using the Canny edge detector [36]) and the drawing 
of a box around the object by using the edges to recognise the pixels in the extremes. An 
example is shown below. Note that flat-lay images are particularly common for footwear. 
Figure 3-4 shows an example of a footwear image automatically annotated for the 
bounding box using this method. 

 

https://en.wikipedia.org/wiki/Canny_edge_detector
https://en.wikipedia.org/wiki/Canny_edge_detector
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Figure 3-4: Example of a (footwear) image annotated for the bounding box using 
the Canny edge detector. 

 

In total, MLZ and CERTH have manually annotated a set of ~3,400 images, to which we 
added 906 more images for some specific types of garments which appeared to suffer the 
most from misdetections. 

 

 3.2.1.2 Images annotated via AWS Sagemaker Groundtruth 

On top of the manually annotated images by MLZ and CERTH, to obtain more data we 
made use of the AWS Sagemaker Groundtruth [37] service. The latter allows 
crowdsourcing the annotation of image datasets by paying workers to perform tasks. It is 
a service AWS built on top of their Mechanical Turk offering and to the authors’ knowledge, 
it is the best available in the market to quickly obtain annotated images for machine 
learning purposes. 

Groundtruth offers an easy-to-use interface whereby one can upload a set of images and 
give written instructions to workers as to what to annotate them for and what rules to 
follow. We provided the same rules we gave ourselves as per the above. Workers will then 
annotate them, but there is no guarantee that they will respect the rules given. When 
multiple workers annotate the same picture, which means the bounding boxes may slightly 
differ in location,  AWS provides the end annotation alongside a “confidence score” for the 
bounding box. The confidence score is calculated by consolidating the label results, if 
more than one worker annotates a single task. AWS Ground Truth calculates this score 
which ranges between 0 and 1 to indicate how confident the ground truth is in the label. It 
was advised to not to interpret the values of the confidence score as an absolute value 
and not to compare the confidence scores of human-labeled data objects and auto-labeled 
data objects. For example, if all of the confidence scores are between 0.98 and 0.998, we 
should only compare the data objects with each other and not rely on the high confidence 
scores. 

The confidence scores for humans are calculated using the annotation consolidation 
function for the task, while the confidence scores for automated labeling are calculated 
using a model that incorporates object features. The two models generally have different 
scales and average confidence. It is worth remarking that the use of AWS Groundtruth 

https://aws.amazon.com/sagemaker/groundtruth/
https://aws.amazon.com/sagemaker/groundtruth/
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comes at a cost, so from the MLZ point of view it was important to assess the cost-quality 
balance in order to decide how to best use it for the task. 

We asked workers on Groundtruth to annotate circa 2,000 images, and after retrieving 
and analysing the results, we have removed all the annotations which appeared to have 
a confidence score smaller than 60%. This choice was motivated by the fact that this value 
appeared to be the median of the distribution of scores, which meant that a fair amount of 
the scores were too low to be usable. 

Unfortunately however, after experimenting with running the model with the images from 
AWS added into our set, we did not obtain improved results. This was also due to the fact 
that in the procedure of removing objects with a low confidence score there is a risk to 
remove just one of two footwear items (which are most often present in couples). Due to 
this and the fact that this image-gathering is expensive, and based on the quality of results 
we obtained with our annotated images only, we decided to not use the AWS Groundtruth 
service anymore but to rely on our own annotations only (which was feasible for four 
objects and a relatively small set). We leave the possibility to use the service in the future 
open, but our results suggest that in order to have quality data one needs to ask for many 
workers per image, hence lowering the overall confidence score, at a higher cost. 

 

 3.2.1.3 Data augmentation and final count of annotated objects 

Data augmentation is a technique that significantly increases the diversity of the training 
image dataset without actually collecting new images. In our case, the augmentation for 
object detection training images were performed with the help of imgaug [38] python 
library, which supports a wide range of image augmentation techniques. This includes 
horizontal and vertical flips, rotation by a specified angle, shifting, padding and many other 
operations. The augmentations ensure that bounding boxes are transformed accordingly 
alongside the image. 

Table 3-2 shows the count of annotated objects alongside the number of augmented 
images for each object and image type (flat-lay ones and non-flat-lay ones). 

 

Table 3-2: Number of annotated and augmented objects based on object type and 
image type. 

Type Object Count of 
annotated 
objects 

Count of objects 
from augmented 
images 

Total objects 

Flat-lay images upper-body 2,134 365 2,499 

lower-body 1,935 565 2,500 

full-body  1,008 1,510 2,518 

footwear 6,788 130 6,918 

Non-flat-lay upper-body 2,663 N/A 2,663 

https://imgaug.readthedocs.io/en/latest/
https://imgaug.readthedocs.io/en/latest/
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(presence of 
human models) 
 
 

lower-body 1,248 489 1,737 

full-body  1,149 1,365 2,514 

footwear 2,565 339 2,904 

 

In our case, several experiments were performed based on not only the object type (upper-
body, lower-body, full-body footwear) but also on whether the given image had a human 
model or whether it was a flat-lay one. Based on these experiments, the augmentation 
operations we decided to use are: 

● horizontal flip + vertical flip + rotation for manually annotated images 
● vertical flip + rotation for flat-lay ones 

The rotation uses an angle randomly chosen from the list of (45, 90, 180) degrees. Note 
that flat-lay images were not flipped horizontally because that would have not created 
different images (a t-shirt or trouser in flat-lay and flipped horizontally would only appear 
different if there are slight asymmetries in the two sides, something rare and not relevant) 
so it would have just added redundancy. 

Augmentation was also used as a solution to better balance the number of training objects 
per object type. Due to reasons inherent to fashion datasets, certain objects are naturally 
more populated than others. The column of annotated objects in table 4-2, for non flat-lay 
images, shows that despite all the best effort in balancing the set upfront, upper-body 
objects are sensibly more frequent than others; this is because the vast majority of images 
with human models that display upper-body clothes show the model in the upper side only, 
so no other garments are present, and this is not the case with other objects. 

We also chose these specific operations after investigating the recent literature about 
image augmentation in the case of object detection tasks [12]. 

 3.2.1.4 Gold standard dataset of images 

Apart from images we had to create for training purposes, it was essential for us to also 
create a set of novel images for the evaluation of the trained models, which is termed as 
a gold standard dataset. This is created, in order to ensure results are unbiased and 
correct, and also in order to best diagnose what the model outputs in terms of boxes for 
each object, we want to check the actual performance of the model on data that was not 
part of the data used to train the models. For the evaluation, new images that were not 
present as part of the training sets were retrieved from the MLZ database. This set was 
ensured to have the highest quality by thoroughly vetting for the presence of human 
models and uncommon postures. We also ensured a balance was kept between flat-lay 
and non-flat-lay images. A total of 635 images have been annotated for the gold standard 
set, as shown in table 3-3. 

 

Table 3-3: Total number of objects and images annotated in the gold standard 
MLZ dataset. 

Object No of 
objects 

upper-body 303 

https://arxiv.org/abs/1906.11172v1


D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 22 of 64 

lower-body 205 

full-body 175 

footwear 508 

 

 3.2.1.5 Datasets naming convention used in the text for object detection 

In the following, we will refer to the object detection datasets with the following naming 
convention (“OD” stands for “object detection”): 

● OD:MLZ dataset: training dataset composed of manually annotated images, flat-
lay images annotated via the Canny edge detection, augmented images, all 
balanced; 

● OD:DF1 dataset: DeepFashion set (first version), selected for the objects; 
● OD:DF2 dataset: DeepFashion set (second version), selected for the objects; 
● OD:AWS dataset: set of images annotated for objects via AWS Sagemaker 

Ground Truth; 
● OD:MLZ-GS dataset: the gold standard dataset, manually annotated for objects 

and built from MLZ images, used for evaluation of model performance. 

3.2.2 Category classification phase 

 3.2.2.1 The MLZ dataset of category images 

For the classification stage, we have also used the MLZ API to download randomised sets 
of images. This stage performs a set of supervised classifications (one per object type), 
thus a dataset of images labeled with garment category is needed. 

We relied on the MLZ taxonomy and counted the number of images MLZ could retrieve 
for each category. Then, we chose the classes for each object type based on 
representativeness of the variety of fashion garments and class size (number of products). 

The set of classes for each object type is specified in Table 3-4. 

 

Table 3-4: List of category types based on object type. 

Object Category classes 

upper-body shirts, formal jackets, t-shirts, hoodies, tanks, camis, sweaters, 
cardigans, blouses, coats & jackets, shawls & capes & ponchos 

lower-body shorts, skirts, jeans, trousers 

full-body dresses, jumpsuits, playsuits 

footwear trainers, boots, flats, sandals, heels 

 

To retrieve said images, MLZ queried its large database by class names, and used regular 
expressions to clean names in order to ensure minimal mismatch rate (e.g., for “shirts”, 
garments like “shirt dress” must be excluded because they are dresses). In addition to 
this, synonyms of categories were taken into consideration while extracting the data from 
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the databases. For example, both “sweater” and “jumper” are used for the category of 
“sweaters”. 

Each set of category images has also been manually checked by MLZ to make sure that 
spurious and wrong cases were removed. This procedure is time consuming but was 
feasible and deemed important to perform. 

The number of images retrieved for each class is outlined in Table 3-5. 

 

Table 3-5: Total number of images retrieved for each class under each object. 

Object Category No. of images 

upper-body sweaters  14,380 

blouses 14,378 

coats and jackets 14,312 

shirts 14,247 

hoodies 14,100 

camis 6,655 

tshirts 12,953 

formal jackets 13,730 

cardigans 13,488 

tanks 3,575 

shawls, capes, ponchos 1,871 

lower-body jeans 13,224 

shorts 13,603 

skirts 14,021 

trousers 14,182 

full-body dresses 4,919 
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jumpsuits 4,626 

playsuits 4,425 

footwear boots 14,125 

flats 13,355 

heels 13,559 

sandals 13,903 

trainers 14,303 

 

Image augmentation is considered to upsample minority classes, prior to model training, 
in order to mitigate the effects of class imbalance, especially on the upper-body classes. 
New samples were generated proportionate to the imbalance ratio between a minority and 
the majority class. On this dataset, the image generator randomly performed horizontal 
flips, rotations with a factor of 0.3 and zooms within a range of [0.9, 1.2].  

 3.2.2.2 Datasets naming convention used in the text for category 
classification 

In the following, we will refer to the datasets used for the category classification stage with 
this naming convention (“CC” stands for “category classification”) 

● CC:MLZ - dataset of images labelled for category, retrieved from the MLZ 
database and following the MLZ taxonomy; 

● CC:DF - dataset of DeepFashion images, which are labelled for category, and 
remapped to the MLZ taxonomy. 

The remapping of DeepFashion images to MLZ’s taxonomy has been performed by a 
combination of quick matching of obvious cases (e.g., DeepFashion’s category of “anorak” 
gets mapped to MLZ’s category of “coats and jackets”, DeepFashion’s category of 
“culottes” gets remapped into MLZ’s category of “trousers”) and manually checking of the 
non-obvious ones. 

3.2.3 Attributes detection phase 

 3.2.3.1 The MLZ dataset of images with attributes 

The attributes of a garment can be many, and span many different features of a product. 
Using the MLZ taxonomy, the total number of main attribute keys is 9: pattern, style, leg 
style, sleeve style, hem style, fit, neckline style, rise, length. This count is excluding less 
important keys like sleeve length or back style. Each of the keys has a pool of possible 
values, which brings the total of attribute {key:value} pairs to 196.  

Not every attribute key can apply to every object and category, e.g. leg style obviously 
applies solely to lower-body and to jumpsuits in the full-body group. Nevertheless, 
because the number of attribute keys a single product may have is large (e.g. a t-shirt can 
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have a pattern, a sleeve type, a length, a hem style and a neckline style), this renders the 
task rather complex to tackle. More precisely, producing all-between-all logically possible 
attribute combinations, from the MLZ taxonomy, results in approximately 107 million 
combinations.  

We decided to then focus on the most important of the attribute keys, pattern and style 
(style expresses a detailed shape of the garment and functions as a subset of the 
category). Patterns can of course apply to any category, while styles may be attached to 
specific categories (e.g., a “skater” style applies only to shirts and dresses, a “gladiator” 
style applies to sandals, etc). The reasoning behind focusing on the most important one 
is of practical nature. It would be unfeasible to download and organise reliable datasets 
for all attributes, and there might also be problems in the training of neural networks with 
that much variety. In comparison with the ‘all-between-all’ combinations, when only using 
the attributes related to styles and patterns, the possible combinations are 1,840 which is 
more manageable. Taking a step-by-step approach and expanding the datasets  for new 
attributes has been deemed the most reasonable approach to take for this step. In addition 
to this, synonyms of categories were taken into consideration while extracting the data 
from the databases. For example, “aztec”, “tribal”, “navajo” are synonyms for the “ethnic” 
attribute value of pattern/print. Hence as part of the pre-processing, the synonyms were 
replaced and maintained to the root word for easier identification and maintaining a unique 
attribute name.  

For reference, we report in table 3-6 the list of values for each of these two chosen attribute 
keys, separated by the object type and category they apply to. 

 

Table 3-6: Mallzee attribute values for the chosen keys, separated by object and 
category. 

Attribute key Attribute values list Applies to (object: category) 

pattern/print ethnic, graphic, floral, tropical, 
striped, checked, animal print, 
polka dots, paisley, spots, 
tartan, geometric, colourblock, 
fair isle, camouflage, grid print, 
dip-dyed, tie-dyed, zigzag, 
washed 

all objects, all categories 

style sweatpants, leggings, culottes, 
peg, harem, capri, formal, 
chino 

lower-body: trousers 

style cargo lower-body: trousers/shorts 

style jeggings, mom, boyfriend lower-body: jeans 

style pencil, skater, a-line, frill, 
flowy,  

lower-body: skirts; full-
body:dresses 

style sweatshorts, cutoff, bermuda, 
skort, running, cycling 

lower-body: shorts 

style wedding, bridesmaid, bodycon, 
tunic, jumper, shirt, shift, slip, 
tea, cocktail, pinafore, wrap, 

full-body: dresses 
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sundress, smock 

style formal, collarless upper-body: shirts 

style blazer upper-body: formal jackets 

style boxy, varsity, baseball, 
boyfriend, fitted, sport, polo, 
muscle 

upper-body: t-shirts 

style tie-front, bib, popover upper-body: blouses 

style waterfall upper-body: cardigans 

style duster, parka, trench, peacoat, 
coatigan, duffle, bomber, biker, 
puffer, anorak, windcheater, 
windbreaker, coach, borg, 
quilted, trucker 

upper-body: coats and jackets 

style running, high-top, chunky, 
fashion 

footwear: trainers 

style wellies, winter, chukka, 
chelsea, biker, cowboy, sock 

footwear: boots 

style loafers, brogues, ballerinas, 
plimsolls, boat, moccasins 

footwear: flats 

style mules, d’orsay, espadrilles footwear: flats/heels 

style court footwear: heels 

style gladiator, t-bar, toe-thong, flip-
flops, sliders 

footwear: sandals 

 

Note that values like “shirt” which applies to dresses as a category, are also homonyms 
of categories themselves (see table 4-4) so care must be taken in retrieving the data for 
those in order to make sure that the category is right. Also, note that some values, like 
“boyfriend” or “biker” exist for multiple categories, hence again one needs to be careful 
when building such datasets. We have made sure that the retrieved datasets for these 
were as balanced as possible in the presence of multiple and/or single attributes, and 
manually checked for quality. In much the same way as in the case of categories, we have 
run specific queries against the MLZ database, taking care of all ambiguities as specified, 
and then also performed careful checks of the data for quality. This step was necessary, 
because there can be many situations where even if the product responds to a query for 
an attribute/keyword, the image retrieved may not (e.g., the attribute refers only to a 
specific detail, or to a side of the product which is not visible). 

It is clear from table 4-6 that even with a few attribute keys the task of training classifiers 
is demanding in that labelled data is required for it, and values for each key may be many 
(for our choices, the pattern key has 20 values and the style key has 91 values). 
Furthermore, a standard classification approach would not bring the innovation we aim to 
achieve with this work, in that it would exploit the same logic used in the second stage, at 
a bigger scale. This work is aimed at creating novel intellectual property that is scientifically 



D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 27 of 64 

sound, so we decided to also perform research using state-of-the-art approaches to this 
problem (see details in sub-section 4.3). 

 

 3.2.3.2 The DeepFashion dataset of images with attributes  

 

In order to compare the results obtained from the dataset built with MLZ images, an 
attempt was made to evaluate the same models using the DeepFashion dataset. The 
DeepFashion dataset contained as many as 1,000 attributes with various levels and 
complexities. For example: the attribute “floral” appears in various forms and 
combinations, such as “floral”, “floral flutter”, “floral knit”, “floral lace”, “floral lace mini”, 
“floral lace sheath”, “floral lace skater”, “floral maxi”, “floral mesh”, “floral midi”, “floral mini” 
et cetera; this is due to the way the dataset has been created by the authors [3]. All the 
attributes in DeepFashion have been remapped to the attribute taxonomy that Mallzee 
created and only the ones matching the taxonomy have been considered. Given that we 
have selected only the “pattern” and “style” attribute keys from the taxonomy, for 
DeepFashion, we are left with 31 values in total after the pruning. The total number of 
images for these is 34,436. For reference, we report in table 3-7 the list of values for each 
of these two chosen attribute keys, separated by the object type and category they apply 
to. 
 

Table 3-7: DeepFashion attribute values for the chosen keys, separated by object 
and category. 

Attribute key Attribute values list Applies to (object: category) 

pattern/print floral, animal print, striped, 
tropical, checked, polka dots, 
paisley, tartan, fair isle, 
camouflage, grid print, zigzag  

all objects, all categories 

style chino lower-body: trousers 

style cargo lower-body: trousers/shorts 

style boyfriend lower-body: jeans 

style flare, flowy lower-body: skirts; full-body: 
dresses 

style bodycon, smock  full-body: dresses 

style baseball, boxy, polo, 
sport,varsity  

upper-body: t-shirts 

style biker, quilted, windbreaker upper-body: coats and jackets 

 

 3.2.3.3 Datasets naming convention used in the text for attributes detection 

In the following, we will refer to the datasets used for the attributes detection stage with 
this naming convention (“AD” stands for “attribute detection”) 

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
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● AD:MLZ - dataset of images labelled with attributes, retrieved from the MLZ 
database and following the MLZ taxonomy; 

● AD:DF - dataset of DeepFashion images, which are labelled for attributes, and 
remapped to the MLZ taxonomy. 

The remapping of DeepFashion’s attributes to MLZ’s ones has been performed with a 
combination of a quick matching of easy ones (e.g. DeepFashion’s “abstract floral” gets 
mapped to MLZ’s “floral” as a pattern) and manually checking of the non-obvious ones. 

 

 

 

 



D3.1 Pattern Recognition on Fashion Imagery                                                                          eTryOn-951908 

Filename: eTryOn_D3.1_final.docx                                                                  Page 29 of 64 

4. Illustration of the pipeline architecture 
 

The employed architecture is a machine learning pipeline that hierarchically detects, 
classifies and annotates garments in image content with attribute values. Figure 3-2 in 
section 3 illustrates the idea: 

1. The first stage is that of object detection: a model is trained to detect the presence, 
and location, of objects amongst the options of upper-body (clothes for the upper 
side of the body), lower-body (clothes for the lower side of the body), full-body 
(clothes that cover the whole body, like dresses and jumpsuits), or footwear. After 
the detection, each object gets cropped to its bounding box and passed to the 
second stage. 

2. The second stage classifies each of these objects for its category. Categories are 
specific to each object (for instance the categories for lower-body objects are 
different from those of upper-body, thus different models are trained for each object 
type). 

3. The third stage tags the objects with detailed attributes, which are structured into 
key:value pairs according to the taxonomy used (see section 4.1). 

Using hierarchical pipeline architectures is common to solve complex tasks in computer 
vision [13]. In the following, we will summarise the results we obtained for each stage of 
the pipeline, the weaknesses we found and the improvements which could be made. 

For each of the stages, we leveraged the power of Transfer Learning. We used pre-trained 
networks (open-access and freely available), that have been trained on large-scale 
datasets (of general type and category), tailoring their last layer to one’s specific set of 
images. The networks then adapt their learning to the objects/categories desired. This is 
a common way to work with deep learning networks: training a deep network from scratch 
to make it learn shapes of interest in pictures would require enormous amounts of data 
and long computation times. Instead, transfer learning is commonly adopted as a working 
approach because the base network has already been learning general shapes in 
pictures, and can fine-tune its weights to the specific ones present in the specialised 
dataset. 

 

Figure 4-1 clarifies the procedure and the chronological dependency of each stage to the 
subsequent one. 

https://arxiv.org/ftp/arxiv/papers/1904/1904.12618.pdf
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Figure 4-1: Outline of the hierarchical pipeline architecture. 

4.1 Object detection phase 

4.1.1 Model building and evaluation 
 

This section describes the first stage of the machine learning pipeline which carries out 
the task of object detection. A pre-trained model on Microsoft’s COCO dataset [14] as 
offered from TensorFlow’s Object Detection API [39], is selected and fine-tuned to detect 
the existence and location of objects of interest in an image and then classify them among 
four high-level categories: “upper-body”, “lower-body”, “full-body” or “footwear”. The 
experiments described in this section were performed on three different datasets, 
DeepFashion (OD:DF), DeepFashion2 (OD:DF2) and MLZ’s object-level dataset 
(OD:MLZ). 

For the evaluation of the Object Detection models, the metrics from COCO challenge [40] 
were utilized, which are integrated in TensorFlow’s evaluation module. We will be focusing 
on the mean average precision (mAP) metric averaged over 10 intersections over union 
thresholds (IoU) (from 0.5 to 0.95 with steps of 0.05 size), which was the central metric of 
the competition, and on average Recall@K (AR@K) that signify the average recall given 
K detections per image. In the following sections, wherever “mAP” is referenced we refer 
to the “mAP IoU = 0.50:0.95” unless otherwise specified.   

 4.1.1.1 Using the DeepFashion dataset 

We initially performed several experiments using the OD:DF dataset in a first comparative 
study to assess the best performing model for the task. After remapping the OD:DF 
dataset from the original attribute-level to the object-type-level it consisted of three 
classes, upper-body, lower-body and full-body items. Our initial comparative study 
consisted of 8 different object detection models, 4 provided by the TensorFlow1 (TF1) 
object detection API [41] and 4 provided by the TensorFlow2 (TF2) object detection API 

https://arxiv.org/abs/1405.0312
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_training_and_evaluation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_training_and_evaluation.md
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
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[42]. In these experiments we down-sampled the OD:DF dataset to 10,000 instances for 
each class which were then split into 8,000 and 2,000 for the training and validation sets 
respectively. Additionally, the images were cropped around the object’s bounding box, 
with a randomly selected factor of 5% to 20%, in order to force the model to focus on the 
desired part of the image and not on the background for instance. The models were fine-
tuned for 300,000 training steps with a batch size of 1. The corresponding results are 
illustrated in Table 4-1, where “Faster R-CNN InceptionV2” [15] was able to outperform all 
other models. Although it is possible that the other models’ predictive performances could 
be improved with further tuning of their hyper-parameters, this was not investigated 
further. 

 

Table 4-1: Comparative study between 8 different object detection models, pre-
trained on MS-COCO and fine-tuned on a down-sampled version of OD:DF. The 

evaluation is in terms of the mean average precision (mAP) and average recall at 1 
(AR@1). (With bold we denote the best performance) 

Model TensorFlow version mAP AR@100 

Faster R-CNN InceptionV2  1 80 84.9 

SSD MobilenetV1 640x640 fpn 1 61.7 77.6 

SSD InceptionV2  1 64.8 76.4 

SSD MobilenetV2  1 57.6 72.4 

SSD ResNet50V1 640x640 fpn  2 40.3 51.2 

Faster R-CNN ResNet50V1 640x640 2 36.6 67.1 

Faster R-CNN ResNet101V1 
1024x1024  

2 8.8 36.2 

SSD ResNet152 v1 fpn 640x640  2 36.6 50 

 

Afterwards, we empirically examined the idea of training three separate object detection 
models, one for each object type. The idea was spawned by one significant limitation of 
the OD:DF dataset. The dataset contains only a single annotated clothing item per image. 
This can be problematic when training object detection models because during the training 
phase, the model may detect garment items which are not annotated and are thus 
considered a wrong prediction by the loss function and by extension in the gradient 
updates. Similarly, while evaluating the model, correct predictions on non-annotated items 
will be considered as false positives by the evaluation metrics thus leading to partly 
uniformative results. We hypothesized that training three-separate models would 
ameliorate this issue. To this end, we randomly selected 10,000 images representing each 
class and trained three separate Faster R-CNN models. The results are illustrated in Table 
4-2. The multiclass model had significantly higher predictive scores in both mAP@0.75 
and AR@100. Additionally, the full-body-only model was found to recognise any 
combination of upper- and lower-body clothes as full-body, and was not able to 
discriminate between different classes.  

 

 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://arxiv.org/abs/1506.01497
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Table 4-2: Faster R-CNN trained on a multi-class object detection task or three 
separate single class tasks (with bold we denote the best performance).   

Dataset Version mAP@0.75 IoU AR@100 

Multiclass OD:DF 97.9 84.9 

Upper-Body only 79 74 

Lower-Body only 92 84 

Full-Body only 83 76 

 

Based on the above outcome, we retraced to training one single multi-class model for the 
object detection task. A final experimentation was performed on a larger sample of OD:DF, 
where all classes were randomly down-sampled into 50,000 instances for each class. The 
larger down-sampled OD:DF was then split into 42,000 and 8,000 for the training and 
validation sets respectively. The model, after being trained for 1.5 million steps, was able 
to reach a mAP 83.7%. This amounts to a +3.7% improvement compared to the smaller 
dataset, indicating that larger datasets can result in better outcomes.   

 4.1.1.2 Using the DeepFashion 2 dataset 

In order to mitigate the limitations and expand upon the OD:DF dataset, Yuying Ge et al 
collected and made publicly available the DeepFashion2 (OD:DF2) dataset. Therefore, 
we proceeded our experimentations with OD:DF2 since it contained multiple annotated 
garment items per image. OD:DF2 contains 13 classes (1 represents short sleeve top, 2 
represents long sleeve top, 3 represents short sleeve outwear, 4 represents long sleeve 
outwear, 5 represents vest, 6 represents sling, 7 represents shorts, 8 represents trousers, 
9 represents skirt, 10 represents short sleeve dress, 11 represents long sleeve dress, 12 
represents vest dress and 13 represents sling dress), which were remapped for this task 
into upper-body (classes 1 to 6), lower-body (7 to 9) and full-body (10 to 13). 

From the total 491,000 images consisting of 801,000 bounding boxes found in 
DeepFashion2, a smaller and balanced sample was selected, consisting of 42,000 objects 
per class in the training set and 8,000 objects per class in the validation set. The down-
sampling limit was selected so as to create a dataset comparable to the OD:DF dataset. 
In order to balance the dataset, a simple undersampling heuristic was used, where all 
examples are kept until a class reaches our defined limit (42,000) and then ignores single 
instances of said class and its co-occurrence with other classes. The Imbalance Ratio (IR) 
for each class, the MeanIR and SCUMBLE metrics were calculated in order to examine 
the level of class co-occurrence and imbalance in multi-label data [16]. IR is calculated as 
the ratio between the majority class divided by all other classes individually while MeanIR 
simply reflects the mean value across all IRs. Similarly, SCUMBLE takes into account both 
the quotient and product among the IR of the various classes to  “evaluate the level of 
concurrence among minority and majority labels” [30]. Lower values indicate lower levels 
of imbalance in the dataset and the lowest possible values are 1 for the meanIR and 0 for 
SCUMBLE. Our sample of OD:DF2 shows relatively low levels of imbalance in the initial 
dataset and since we are downsampling to a completely balanced set, MeanIR and 
SCUMBLE metrics are optimal as can be seen in table 4-3.  

 

https://link.springer.com/chapter/10.1007/978-3-319-07617-1_10
https://www.sciencedirect.com/science/article/pii/S0925231218301401?casa_token=RSAZ-9dnGnEAAAAA:2RG4ajg6Xpz-yCrxZSWBTTisFFulpx4qiTUOmjbcEJUKinc_suQ046x3ol5kr-XxRAnNw0krgg
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Table 4-3: The calculated meanIR and SCUMBLE metrics designate the level of 
imbalance present in the DeepFashion2 (OD:DF2) dataset (lower values indicate 

lower levels of imbalance). 

Dataset State Per-Class Distribution meanIR SCUMBLE 

Original training set upper-body: 139,789 lower-
body: 122,838 
full-body: 49,559 

1.6528 0.1321 

Balanced training set upper-body: 42,000 
lower-body: 42,000 full-
body: 42,000 

1 0 

 
After balancing and transforming the dataset into “TensorFlow Records”, we selected to 
experiment with four object detention models, pre-trained on MS-COCO, that provide a 
balanced trade-off between accuracy and computational resources. To this end, we 
selected the models depicted in table 4-4 with the model’s mean average precision on the 
MS-COCO and its speed in milliseconds when run with 600x600 image on a GeForce 
GTX TITAN X, as offered from TensorFlow Object Detection model zoo (TF1 and TF2). It 
is important to note, that MS-COCO is a large scale dataset consisting of more than 
330,000 images containing 1.5 million object instances of 90 object categories. Therefore 
the results of the aforementioned Object Detection models are not directly comparable - 
only relatively - to the selected fashion-related datasets which are of relatively smaller 
scale.  

We kept the Faster R-CNN model from TF1 since it had the best performance on OD:DF 
but expanded the comparative study with three more models from TF2, two variants of 
EfficientNet and CenterNet with an HourGlass104 backbone. 
 
Table 4-4: The selected object detection models from TensorFlow’s model zoo and 

their computational and predictive performance.  

Model Speed (ms) COCO mAP 

Faster R-CNN InceptionV2 58 28 

CenterNet HourGlass104 512x512  70 41.9 

EfficientDet D1 640x640 54 38.4 

EfficientDet D2 768x768 67 41.8 

 
The performance of each model can be seen in table 4-5, with CenterNet having the 
highest performance in 6 out of 10 metrics with a mean average precision (mAP) of 75.6% 
and an average recall at 1 (AR@1), of 83.5%. For all models the default hyper-parameters 
were used, as given by the TensorFlow object detection API, with the exception of the 
batch size that was significantly reduced to fit in the memory and the learning rate only in 
the case of EfficientDet-D1 which had a very high default learning rate that caused the 
model to quickly overfit while being fine-tuned on the OD:DF2 dataset. 
 

 
 
 
 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://cocodataset.org/#home
https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt
https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt
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Table 4-5: The performance of the selected Object Detection models, pre-trained 
on MS-COCO and fine-tuned on the DeepFashion2 (OD:DF2) dataset in terms of 

the mean average precision (mAP) and the average recall (AR) (with bold we 
denote the best performance). 

Model Faster R-CNN EfficientDet-D1 EfficientDet-D2 CenterNet 

Training Steps 1.5 million 360,000 400,000 300,000  

Seconds per 
100steps 

~13.5 ~40 ~70 ~75 

Batch size 1 2 2 2 

Parameters Default Learning Rate 
1e-4 

Default Default 

mAP 0.730 0.721 0.648 0.756 

mAP (large) 0.738 0.723 0.650 0.759 

mAP (medium) 0.484 0.528 0.420 0.437 

mAP (small) - - - - 

mAP@50IOU 0.919 0.929 0.898 0.905 

mAP@75IOU 0.852 0.840 0.759 0.846 

AR@1 0.806 0.791 0.728 0.835 

AR@10 0.836 0.815 0.762 0.868 

AR@100 0.837 0.819 0.767 0.869 

AR@100 (large) 0.839 0.820 0.768 0.871 

AR@100 
(medium) 

0.659 0.667 0.605 0.662 

 
When the above models, fine-tuned on OD:DF2, were tested on OD:MLZ-GS excluding 
the footwear images they produced the results shown in the following table (table 4-6) 
where again the CenterNet with a HourGlass104 backbone showed the highest 
performance.  
 
 
 
Table 4-6: Models trained on OD:DF2 and tested on the OD:MLZ-GS dataset (with 

bold we denote the best performance). 

Model mAP AR@1 AR@100 

Faster R-CNN 73.9 83.5 84.2 

CenterNet 76.9 85.1 86.8 

EfficientDet-D1 73.6 81.7 82.8 
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 4.1.1.3 Using the MLZ dataset 

Table 4-7 reports the results with a base model of Faster R-CNN, trained on the OD:MLZ 
dataset and considering all four objects and testing against the OD:MLZ-GS dataset. Refer 
to subsection 4.2.1.5 for the datasets. 

 

Table 4-7: Faster R-CNN trained on variations of the OD:MLZ datasets, and 
evaluated on the OD:MLZ-GS dataset (with bold we denote the best performance). 

Training dataset mAP AR@100 

OD:MLZ 80.6 85.8 

OD:MLZ + additional playsuits 
and tanks images 

76 82.2 

OD:MLZ + OD:AWS 58 72 

 

The highest accuracy achieved was using the OD:MLZ which contains a balanced training 
set of manually annotated, flat-lay and augmented images. The number of training steps 
were increased to 500,000 due to performance of the model which is shown in the 
Precision-Recall graph (Figure 4-2 below). The mean average precision (mAP) for large, 
medium showed an improvement in the accuracy whereas the smaller objects plummeted 
significantly at about 200,000 epochs. The red line plotted on the graph shows the results 
of the OD:MLZ-GS dataset, which was used as part of the evaluation process with novel 
images.  
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Figure 4-2: Precision and Recall graphs of the best Object Detection model (at 

500k steps). 
 
As part of the inference process, novel images from the OD:MLZ-GS were tested against 
the trained OD model, Figure 4-3 shows some of the results. 
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Figure 4-3: Inference results on some of the images in the OD:MLZ-GS dataset. 

 
For completeness, we also report the main results obtained on the DeepFashion datasets, 
as per the description in sub-section 4.2. 

As a point of comparison, the Match-RCNN, proposed in the original DeepFashion2 paper, 
was able to yield a mAP of 66.7% on the clothes detection task with 13 categories [4] More 
recently Alexey S. et. al., utilizing a modified CenterNet architecture and multiple post-
processing techniques, were able to increase the mAP up to 73.7% on the same task [34]. 
While it can not be directly compared, we were able to reach 76.9% on the OD:DF2 
dataset and 80.6% on the OD:MLZ dataset, with 3 and 4 object categories respectively. 
This indicates that our methodology is comparable with the State-of-the-Art especially 
when considering the results in the two following tasks, category classification and 
attribute detection.  

4.1.2 Planned improvements 

The model outputs show some recurring patterns of wrong detections which could be 
treated a-posteriori by virtue of simple heuristics. 

 

https://arxiv.org/pdf/1901.07973.pdf
https://openaccess.thecvf.com/content/WACV2021/papers/Sidnev_DeepMark_Real-Time_Clothing_Detection_at_the_Edge_WACV_2021_paper.pdf
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Figure 4-4: Examples of bad predictions from the object detection inference. 

 

One such case is hands (of the human model) being detected as footwear, another is bare 
legs being detected as lower-body when the human model is wearing a short bottom 
garment (skirt or shorts), see Figure 4-4. There are some heuristics that can help, in at 
least the majority of cases, to clear out such situations: 

● (for the hands): if a footwear is detected in the middle of the picture, or near upper-
body garments, remove it as it is likely a hand, however note that this will not work 
in cases where hands are next to the feet, such as when the person appears in a 
seated pose, these are rare occasions but may be present; 

● (for the bare legs): if two lower-body objects are detected in conjunction, one can 
think of considering only the smallest one, however this needs to be done with care 
because it may not work in all situations. 

These are just suggested heuristics and likely non-comprehensive of all cases: a proper 
data analysis on a large set of outputs would have to be carried out to determine the best 
choice for robust post-processing rules. Furthermore, there might be other cases affected 
by similar problems which also need to be investigated. 

Other improvements to the accuracy which could be implemented include further 
sophistication in terms of scene learning [31] and human parsing [32] for a better detection 
of the relations amongst objects. 

4.2 Category classification phase 
 

The second stage of the developed machine learning pipeline carries out the task of image 
classification into mid-level categories. This task was treated as a multi-class classification 
since there are multiple classes that are mutually exclusive. Additionally, since the images 
are first passed through an object detection model, apart from having the cropped images 
focused only on the object of interest, the high-level class (object) of the item will also be 
known (upper/lower/full-body or footwear). Thus, four different models could be trained, 
one for each object type category. This approach could improve the specialization of each 
model and thus improve their accuracy with the possible tradeoff that misclassified objects 
at the object detection phase would be passed in the wrong model. For example, if a 
playsuit (which belongs in the full-body object type) was wrongly predicted as a shirt 

https://ieeexplore.ieee.org/abstract/document/9412662
https://openaccess.thecvf.com/content_ECCV_2018/html/Ke_Gong_Instance-level_Human_Parsing_ECCV_2018_paper.html
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(which belongs in upper-body category), it would be passed in the ‘upper-body’ 
classification model which would not have previously seen playsuits. As a result, we 
experimented with both approaches, 1) having four separate models for each object type 
and 2) one model trained on all 22 classes in order to empirically examine the overall 
performance of each.  

4.2.1 Model building and evaluation 
 

Working with the annotated CC:MLZ dataset enabled the training of supervised multi-class 
classification models. Similarly to the object detection phase, the most central challenges 
of this stage were to:  

1. Experiment with various deep learning models 
2. Handle the issue of class imbalance 
3. Tune the hyper-parameters of each model 
4. Select the appropriate transfer learning approach 

 
Due to constraints in computational resources and having a moderately sized dataset we 
decided to experiment with models that have a relatively limited number of layers and 
parameters but that also had shown adequate performance in benchmark datasets.  
Given these criteria, we selected the following deep learning architectures: Xception, 
InceptionV3 and multiple variations of EfficientNet whose details as well as their 
performance on ImageNet can be seen in table 4-8.  
 

Table 4-8: The selected pre-trained computer vision models for category 
classification. 

Model Total Parameters * Layers * Accuracy@1 on ImageNet ** 

EfficientNet-B1 6,575,239 339  78.8 

EfficientNet-B2 7,768,569 339 79.8 

EfficientNet-B3 10,783,535 384 81.1 

EfficientNet-B4 17,673,823 474 82.6 

Xception 20,861,480 132 79 

InceptionV3 21,802,784 311 78.8 

* As implementation in Keras API ** Source : Papers with Code  
 
In order to train and evaluate the performance of these models, the image data and their 
labels had to be fed into the model with the use of a data generator that creates a batched 
TensorFlow dataset. The dataset was split into three separate sets for training, validation 
and testing based on a ratio of 0.8/0.1/0.1 respectively. The exact same sets were used 
for all experiments in order to ensure reproducibility and a fair comparison. 

The workflow in all supervised multi-class experiments consisted of the following steps. 
Initially, one of the models shown in Table 4-8 was selected from Keras API with pre-
trained weights on ImageNet without its previous final classification layer. Then, the input 
images from the training set are passed through an image augmentation preprocessing 
layer that performs subtle alterations to the images as a method of regularisation and by 
extension the mitigation of over-fitting. The images were horizontally flipped at random 

https://paperswithcode.com/sota/image-classification-on-imagenet
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and were randomly rotated and zoomed in by a low factor of 0.1 out of 1. The augmented 
images are then passed through the base model. The features that are extracted from the 
last convolutional layer of the base model are pooled with the use of global average 
pooling thus transforming the output into a 2D tensor. The original classification layer is 
replaced by a new dense layer, with uninitialized weights that is activated by the softmax 
function and has an output size equal to the number of classes in the dataset. 
Subsequently, the model is trained by an adaptive gradient descent optimizer (Adam or 
RMSProp) which performs gradient updates per individual parameter, with the use of 
sparse categorical cross-entropy as the loss function, since the labels are encoded as 
single integers. After each epoch, the model is evaluated on the validation set in terms of 
its predictive accuracy; if the validation accuracy is improved a callback is called to 
checkpoint the model’s weights and if the validation accuracy is not improved for 
consecutive epochs, the training process is terminated and the weights of the best 
performing epoch are restored.  

The issue of class imbalance was not a major challenge for this task due to the fact that 
the CC:MLZ dataset was collected with the explicit objective of creating a balanced 
dataset. However, in the cases that a slight imbalance was present, two approaches were 
examined: 1) using the class weight parameter or 2) upsampling the minority classes with 
the use of image augmentation. In the first approach, the imbalance found in the dataset 
is left unaltered but the class weight parameter that is available in Keras’ .fit() function was 
set to be proportional to imbalance ratios between all classes. In the second approach the 
minority classes were upsampled with the use of data augmentation techniques. The 
generated samples were proportionate to the imbalance ratio between a minority and the 
majority class. Specifically, the image generator randomly performed horizontal flips, 
rotations with a factor of 0.3 and zooms within a range of [0.9, 1.2].  

Both approaches were tested on the upper-body-only dataset, which had 11 different 
classes with a mean value of 11,244 images per class, a median of 13,730, a maximum 
of 14,380 in “sweaters” while “camis” had 6,655 samples and “tanks” 3,575. It was 
concluded that training an EfficientNet-B1 with the upsampled dataset yielded a better 
performance of +1.92% compared to the balanced class weight approach. Similarly, 
training the same model on the CC:DF upper-body-only dataset, there was a slight 
improvement of +0.52% with the upsampled dataset. We therefore proceeded using the 
“upsampling by image augmentation” technique for most experiments, with the exception 
of models that were trained on the whole CC:MLZ dataset since balancing the dataset 
would significantly increase its scale and as a result the required computational resources.   

During the time that we were executing the initial experiments on the CC:MLZ dataset we 
were also implementing them on the CC:DF dataset. The central intention behind this idea 
was to later merge the two datasets, since a larger dataset would potentially lead to 
improving the model’s performance. The CC:DF dataset was downsampled per class to 
match the CC:MLZ’s dataset distribution. Additionally, the former’s class taxonomy was 
remapped to match the latter’s. However, the same network architecture would 
consistently underperform when applied on the CC:DF dataset. An EfficientNet-B1 model 
had +14.15%, +11.32% and 5.68% better performance, for upper-body-only, full-body-
only and lower-body-only respectively, when trained on the CC:MLZ dataset compared 
with the CC:DF dataset. After randomly sampling images from the CC:DF dataset, it was 
assessed that its attribute-level annotations (the dataset’s original state, annotated with 
fine-grained attributes, without applying any remapping of the categories) contained a 
certain amount of ‘noise’, wrongly labeled instances, that when mapped on the category-
level resulted in lower performance. When the two full-body-only datasets were merged, 
from both CC:MLZ and CC:DF, the model’s predictive accuracy was still 7.84% worse 
than when using only the CC:MLZ dataset. It was extrapolated that MLZ’s category-level 
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dataset, despite being smaller in size, had lower rates of wrongly labeled instances and 
thus was chosen for the subsequent experiments.  

In all aforementioned models, there were a few important hyper-parameters that required 
manual and careful selection in order to derive the best possible performance for each 
model. Those included the learning rate, the rate in the dropout layers, the batch size and 
the optimizer. The hyper-parameters and the selected values are shown in table 4-9. Due 
to computational limitations, we were unable to run a complete grid search between all 
models, hyper-parameters and datasets but rather enough comparative experiments were 
performed and combinatorial directions that did not perform optimally in consecutive 
experiments were discarded and consequently, we continued experimenting with those 
that had showed better performance.  

Due to the fact that we mostly relied on fine-tuning certain portions of pre-trained networks, 
the learning rate had to be kept relatively low in order to avoid abruptly updating the 
gradients and by extension lead to either under- or over-fitting. Accordingly, we chose to 
experiment with low learning rate values of 1e-5, 5e-5 and 1e-4. In most cases, we found 
that all three rates resulted in approximately the same result but lower rates required more 
epochs to reach the global minimum of the problem and more computational resources 
and time. Thus, we maintained a learning rate of 1e-4 for the majority of the experiments. 
Secondly, regarding the dropout layer rate, we experimented with values ranging from 0.3 
to 0.5. As can be seen in Figure 4-5, larger dropout rates, 0.4 and 0.5, led to a 
progressively smaller divergence between training accuracy and validation accuracy, 
which translates to a more stable training process and decreased rates of over-fitting. 
Additionally, in this particular experiment, the model with the higher dropout rate (0.5) was 
able to converge to the same result but two epochs faster than the models with 0.3 and 
0.4 dropout probability. As a result, in most experiments, we maintained a dropout rate of 
0.5.  

  

 
Figure 4-5: Training history of EfficientNet with the same hyper-parameters but 

with different dropout layer rates.  
 
The defined batch size is naturally dependent on the available memory and consequently 
on the network’s size. We selected batch sizes of 16, 32, 64 that were the maximum based 
on each individual network size and the available memory. Finally, following the original 
EfficientNet paper we utilized the RMSProp [17] optimizer with a decay rate of 0.9, a 
momentum rate of 0.9 and batch norm momentum 0.99 but when compared with the Adam 
optimizer, Adam had a very slight advantage of +0.67% over RMSprop but a significant 
63% faster convergence time with EfficientNet-B1 trained on the full-body-only dataset. 
As a result, Adam was selected for the proceeding experiments.  
 
 
 

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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Table 4-9: The hyper-parameters and their values in the parameter grid search. 

Hyper-parameter Values 

Learning Rate 1e-5, 5e-5, 1e-4 

Dropout Rate 0.3, 0.4, 0.5 

Batch Size 16, 32, 64 

Optimizer RMSProp, ADAM 

 
Transfer learning techniques were also utilized at this stage. Various deep learning models 
that were pre-trained on a large image dataset (e.g. ImageNet) for the task of image 
classification were selected as the ‘base model’ and a new untrained classification layer 
was added on top. This method allows for three main approaches:  
1) Feature Extraction. The pre-trained parameters are ‘frozen’ and the pre-trained model 
is used to extract features from the images. In this approach only the weights and biases 
of the classification head are trained while the base model’s parameters are left unaffected 
throughout the training process. 
2) Fine-Tuning. All or a certain portion of the trainable parameters of a pre-trained deep 
learning architecture are ‘unfreezed’ and ‘fine-tuned’ for the target dataset.  
3) Hybrid. A pre-trained model is initially used as a feature extractor and once the added 
classification layer is trained on the target task, a certain portion of the trainable 
parameters are ‘unfrozen’ and fine-tuned. This approach is recommended by 
TensorFlow's fine-tuning guideline [43] in order to avoid the base model forgetting what it 
had learned during pre-training by large gradient updates.   

Considering that the dataset was specific to the domain of fashion, solely relying on 
‘feature extraction’ would lead to suboptimal results since a model pre-trained on 
ImageNet, a general purpose dataset, would not have been exposed to enough fashion-
related imagery. On the other hand, due to the relatively limited magnitude of the 
annotated CC:MLZ dataset, approximately 300,000 images compared to the 14,197,122 
found in ImageNet [18], fine-tuning all trainable parameters of a pre-trained image 
classification model would most likely lead to overfitting and would also require 
significantly more computational resources. Thus, fine-tuning a certain portion of a pre-
trained model was deemed as the most appropriate pathway.  

In order to empirically compare the efficacy of each approach, Feature Extraction (FX) 
and Fine Tuning (FT), we utilized an Xception and an EfficientNet B1 model with exactly 
the same hyper-parameters where in the first case all the trainable parameters were 
‘frozen’ while in the second, the 50 to last layers of the network were ‘unfrozen’ and fine-
tuned during the training stage. As can be seen in the left side of both figures 4-6 and 4-
7, when using the pre-trained model solely as a feature extractor the accuracy of the model 
was slowly reaching a plateau of approximately 80% in terms of validation accuracy while 
continuing the training process with unfreezing a few of the trainable parameters 
significantly increased the validation accuracy to approximately 90%.  

https://www.tensorflow.org/tutorials/images/transfer_learning#fine_tuning
https://www.tensorflow.org/tutorials/images/transfer_learning#fine_tuning
https://paperswithcode.com/dataset/imagenet
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Figure 4-6: An Xception model trained on full-body categories used as feature 
extraction and then fine-tuned (left) and fine-tuned from the first epoch (right). 

 

 
Figure 4-7: An EfficientNet-B1 model trained on full-body categories used as 

feature extraction and then fine-tuned (left) and fine-tuned from the first epoch 
(right). 

 
Furthermore, comparing the results between direct Fine-Tuning and the Hybrid approach 
(table 4-10), the first approach led to a slightly better performance of +1.15% in Xception 
and +0.86% in EfficientNet B1 indicating that the concern of ‘forgetting what the model 
had learned during pre-training’ was not present in our experiments. The aforementioned 
experiments were performed on the full-body-only dataset but it was also reproduced in 
the upper-body-only dataset. Despite the seeming training instability of directly fine-tuning 
a pre-trained model and its visible over-fitting (on the right side of Figure 4-6 and Figure 
4-7) we concluded that with stronger regularisation (higher dropout rate and image 
augmentation) the training process would become more stable and the divergence 
between training and validation accuracy would decrease thus mitigating the phenomenon 
of over-fitting on the training dataset. Additionally, utilizing an Early Stopping callback 
could end the process significantly earlier while conserving high levels of accuracy when 
compared with the Hybrid approach which required additional epochs for only training the 
classification layer. Therefore, we proceeded with selecting the second option, of direct 
fine-tuning, for experiments reported in table 4-10. 
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Table 4-10: Comparing a Hybrid Transfer Learning approach where a model is first 
utilized as a Feature Extractor (FX) and then Fine-Tuned (FT) with directly Fine-

Tuning the model from the first epoch.  

Model Dataset Fine-Tuning 
Method 

Test Accuracy 

Xception Full-body-only 10 FX epoch + 10 
FT epoch 

90.7% 

Xception Full-body-only 20 FT epochs 91.85% 

Efficient Net B1 Full-body-only 10 FX epoch + 10 
FT epoch 

91.13% 

Efficient Net B1 Full-body-only 20 FT epochs 91.99% 

Xception Upper-body-only 10 FX epoch + 10 
FT epoch 

84.05% 

Xception Upper-body-only 20 FT epochs 83.91% 

Efficient Net 1 Upper-body-only 10 FX epoch + 10 
FT epoch 

85.91% 

Efficient Net 1 Upper-body-only 20 FT epochs 86.27% 

 
Performing multiple experiments with direct fine-tuning of InceptionV3, Xception and 
EfficientNet variants we concluded that EfficientNet B3 and B4 were able to consistently 
outperform the other architectures in all datasets. A significant advantage of EfficientNet 
is that its larger variations are scaled efficiently in terms of all three neural network 
‘dimensions’: input resolution, depth and width. We hypothesise that this fact enables for 
improvements in predictive accuracy while maintaining manageable demands in terms of 
computational resources. A selection from all performed experiments comparing the 
various network architectures when different amounts of the model’s highest layers are 
fine-tuned, can be seen in table 4-11. Only the best performances are presented in the 
table by each network on different quantities of fine-tuned layers with a dropout rate of 0.5 
and the batch size being constant for each dataset. 
 

Table 4-11: The performance of various models pre-trained on ImageNet and 
partly fine-tuned for garment category classification. (With bold we denote the 

best performance) 

Training Dataset Model Fine-tuned Layers Learning Rate Accuracy 

CC:MLZ - full-body EfficientNet-B1 30 1e-4 90.69 

  50 1e-4 91.7 

  100 1e-4 91.77 

 EfficientNet-B2 80 1e-4 92.34 

  100 1e-5 91.34 
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 EfficientNet-B3 80 1e-4 91.41 

  100 1e-4 93.63 

 EfficientNet-B4 80 1e-4 93.77 

  100 1e-4 94.2 

 Xception 30 1e-4 93.06 

  50 1e-4 92.91 

  100 1e-4 92.91 

CC:MLZ - lower-
body 

InceptionV3 30 1e-4 89.79 

  50 1e-4 89.72 

  100 1e-4 92.7 

 EfficientNet-B1 30 1e-4 90.37 

  50 1e-4 90.19 

  100 5e-5 91.79 

 EfficientNet-B2 100 1e-4 91.46 

 EfficientNet-B3 100 1e-4 93.19 

 EfficientNet-B4 100 1e-4 93.86 

 Xception 50 5e-5 93.75 

  100 1e-4 93.3 

CC:MLZ - footwear InceptionV3 30 1e-4 90.75 

  50 1e-4 91.87 

 Xception 30 1e-4 92.36 

  50 5e-5 93.17 

  80 5e-5 93.59 

  100 5e-5 92.86 

 EfficientNet-B1 30 1e-4 92.52 

  50 1e-4 92.61 

  100 1e-4 93.39 

 EfficientNet-B2 100 5e-5 93.89 

 EfficientNet-B3 100 1e-4 93.94 

 EfficientNet-B4 100 1e-4 94.21 
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CC:MLZ - upper-
body 

EfficientNet-B1 50 1e-4 80.14 

  100 1e-5 83.16 

  140 5e-5 85.31 

 EfficientNet-B2 100 1e-4 83.91 

  140 1e-4 86.04 

 EfficientNet-B3 100 1e-4 86.33 

  140 1e-4 85.75 

 EfficientNet-B4 100 1e-4 87.64 

 
All the above experiments were performed with the original MLZ dataset consisting of full 
scale images. Since the images were not cropped, separating different object types, some 
could entail items belonging in different garment categories. After training the Object 
Detection model, described in the previous section, we were able to crop the images 
around their predicted bounding boxes and keep only those matching the mid-level 
garment category. If for example, an image depicted a model wearing both a t-shirt (upper-
body) and trousers (lower-body) but the image was retrieved from the CC:MLZ dataset 
labeled as a t-shirt (since that was the marketable product in that case), only the first 
cropped image would be kept for the category classification stage. This enabled the more 
‘focused’ and attentive training of the four separate models, one for each object type. 
Comparing the models trained on the uncropped images with those that used the cropped 
ones, we can observe a modest improvement of +0.37% from a mean value of 92.47% to 
92.84% respectively. The difference between the two was initially expected to be higher. 
We hypothesise that since each model only encountered items from a specific object type 
and would also encounter images of the same class photographed from various ranges 
(from close-ups to long-shots) they were able to extract and identify only the relevant 
features relating to each of the known classes. Additionally, using the cropped CC:MLZ 
enabled the training of one model for all 22 garment category classes. The best performing 
model for this task, a fine-tuned EfficientNet-B4, was able to yield a 92.24% accuracy 
score, a slight -0.6% compared to the mean accuracy of the four separate models. 
However, having a single model for all 22 garment categories has two significant 
advantages. First, it is easier to re-train and more efficient to employ compared to having 
four separate models. Secondly, having one model for all classes does not suffer from the 
misclassified items that may result from the object detection phase. In the case of having 
separate models for each body type, an object wrongly classified as an “upper-body” type 
while being “full body” will be passed in the wrong model that has not been trained to 
recognise full-body type items. Therefore, we consider that the very slight performance 
drop is outweighed by the two aforementioned advantages. The detailed results for each 
of the best performing models per dataset can be seen in table 4-12.   
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Table 4-12: Summary of best performing models for the task of category 
classification. 

Training dataset Cropped 
Images 

Accuracy Network 
model used 

Hyper-parameters 

CC:MLZ -  
Full Dataset 

Yes 92.24% EfficientNet-B4 Fine-tuned layers: 100 
Learning rate: 1e-4  
Batch Size: 32 
Dropout rate : 0.5 
Balancing: class weight 

CC:MLZ - Full-
Body 

Yes 94.9% EfficientNet-B4 Fine-tuned layers: 100 
Learning rate: 1e-4 
Batch Size: 32 
Dropout rate : 0.5 
Balancing: over-sampling 

 No 94.2%   

CC:MLZ - Lower-
Body 

Yes 94.44% EfficientNet-B3 Fine-tuned layers: 50 
Learning rate: 1e-4 
Batch Size: 32 
Dropout rate : 0.5 
Balancing: over-sampling 

 No 93.86% EfficientNet-B4 Fine-tuned layers: 100 
Learning rate: 1e-4 
Batch Size: 32 
Dropout rate : 0.5 
Balancing: over-sampling 

CC:MLZ - 
Footwear 

Yes 93.86%  EfficientNet-B4 
 

Fine-tuned layers: 100 
Learning rate: 1e-4 
Batch Size: 32 
Dropout rate : 0.5 
Balancing: over-sampling 

 No 94.21%   

CC:MLZ - Upper-
Body 

Yes 88.15% EfficientNet-B4 Fine-tuned layers: 100 
Learning rate: 1e-4 
Batch Size: 32 
Dropout rate : 0.5 
Balancing: over-sampling 

 No 87.64%   

 

As a point of comparison, the FashionNet model, proposed in the original DeepFashion 
paper, was able to yield 82.58% and 90.17% in terms of top-3 and top-5 accuracy 
respectively on the Category Classification task with 50 categories [3]. More recently Li. 
et. al., with the use of multi-task learning, were able to increase the top-3 and top-5 
accuracy scores up to 93.01% and 97.01% on the same dataset [33]. Applying our 
proposed methodology on the DeepFashion dataset - first passing the images through our 
object detection model and then re-training an EfficientNet-B4 network on the cropped 
images - was able to slightly surpass the current state-of-the-art with 93.71% and 97.40% 
top-3 and top-5 accuracy. Additional advantages of our approach when compared with 
previous studies include the ability to work on full-scale real-world fashion imagery, that 
may depict multiple garment items per image, without utilizing overly complicated 
architectures, manual guidance from domain experts or requiring landmark and mask 
annotations; which are arguably two costly and time-consuming types of annotation.  
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4.2.2 Planned improvements 

The models for this stage perform well, unsurprisingly given the current quality of state-of-
the-art neural networks for basic classification tasks. However, there may still be room for 
improvement in terms of minimising misclassifications that may arise from certain 
ambiguous cases due to the general diversity of fashion imagery.  

Some further data cleaning work could be performed to achieve a clearer separation of 
classes in the first place, so that ambiguity is improved, for instance in situations like the 
difference between jeans and trousers. 

4.3 Attributes detection phase 

The third stage of the developed machine learning pipeline carries out the task of detecting 
fine-grained attributes from garment imagery and classifies them into multiple low-level 
categories. The selected types of attributes that the model was trained to discern were 20 
classes regarding the pattern or print of the garment and 92 types of low-level categories, 
a total of 112 classes. Due to the fact that styles and patterns are not mutually exclusive - 
meaning that a garment may possibly be characterised as having both a style and a 
pattern (e.g. a checked shirt or a floral sundress) - this task is treated as a multi-label 
classification problem. However, it was assumed that styles and patterns are internally 
mutually exclusive (an item can not have both “floral” and “camouflage” as its print, for 
instance), meaning that an item can not belong to more than one style or print/pattern at 
the same time. This assumption was also reflected in the collected MLZ dataset with only 
1,175 instances exhibiting more than one style or pattern attributes. After manually 
examining it, it was deemed that most were either wrongly labeled or very rare outliers. 
The MLZ dataset utilized for attribute detection consists of a total of 310,358 image-text 
pairs, after dropping a few duplicates and filtering instances with more than one type 
pattern or style. The dataset was split with a ratio of 9 to 1, into a training set (279,322) 
and a validation set (31,035). The exact same sets are being used in all following 
experiments regarding attribute detection. 

4.3.1 Model building and evaluation 
 

For the task of Attribute Detection, two main approaches were examined:  

1. Cross-modal Vector Alignment for Image-Text pairs  

2. Multi-label Supervised Learning 

The first approach was inspired by two recent papers by OpenAI [19] and Google 
Research [20] that utilized contrastive learning between Image-Text pairs in order to 
perform various classification and retrieval tasks. The objective of the first approach was 
to train a vision encoder for the task of detecting fine-grained fashion attributes without 
the need of manually annotating a considerable amount of images. The second approach 
was reserved as a back-up plan in case the first did not perform adequately but would 
require the collection of an annotated dataset.  

 4.3.1.1  Cross-modal Vector Alignment for Image-Text pairs 

Both OpenAI’s CLIP and Google’s ALIGN follow a similar workflow that requires one 
Image Encoder, one Textual Encoder and for both to be trained simultaneously with the 
use of contrastive learning. During the training phase, the image and text of a pair are 
given to their respective encoder, the resulting embeddings of both encoders are 
‘projected’ in the same embedding space. Thereafter, a dual encoder calculates the dot 
product between image and text embeddings and the loss is calculated as the mean cross 

https://arxiv.org/pdf/2103.00020.pdf
https://arxiv.org/abs/2102.05918
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entropy between the predicted and the target image-text pairs, reflected in the main 
diagonal. After the training is completed, the dual encoder is discarded and only the two 
separate encoders are saved. Both models can be used for either zero-shot classification 
or retrieval tasks. In the first case, for performing the zero shot classification, all desired 
‘target sentences’ are given in the text encoder and each image is being matched with the 
top-K most appropriate captions/sentences.  
 

 
Figure 4-8: OpenAI’s CLIP workflow for pre-training the model (left) and for 

performing zero-shot classification (right) 
 
OpenAI’s CLIP was made publicly available shortly after the paper’s release, thus we were 
able to experiment with it as a zero-shot classifier or fine-tuning it on the fashion domain. 
On the other hand, Google’s ALIGN has not yet been made available and therefore we 
considered recreating a similar architecture. Instead of using the Visual and Textual 
transformers used in OpenAI’s CLIP, we used similar components to Google’s ALIGN. 
Initially we used variations of the BERT (Bidirectional Encoder Representations from 
Transformers) model (bert-base-uncased) [21] for the text encoder and variants of 
EfficientNet for the Image Encoder, a family of models that has proven very effective in 
the Image Classification Task. The EfficientNet models pre-trained on ImageNet were 
taken from Keras API while the variants of BERT were taken from TensorFlow Hub. On 
top of both pre-trained encoders, one or more fully connected layers are added with a 
predefined output dimension so that the image and text embeddings can be matched in 
the same embedding space. These layers will be referred to as ‘projection layers’. In the 
case where more than one projection layer is added on top of the encoders, the in-
between layers are connected with an optional Dropout layer and are activated by a GeLU 
activation function.  

During the training phase, the image-text pairs are read as a tf.dataset with the use of a 
data generator. The images are resized according to each EfficientNet variant expected 
input, passed through a data augmentation pre-processing layer that performs random 
horizontal flips, rotations and zooms by a factor of 0.1. The text is tokenized with BERT’s 
tokenizer, also offered by TensorFlow Hub, and then trimmed by a user-defined sequence 
length, with the maximum possible value being 512. After preprocessing both the images 
and texts inside the batch, the data are passed through their respective encoder, their 
output embeddings are projected onto the same embeddings space and then are 
normalized with l2 normalization. Afterwards, the loss function is calculated, similarly to 
OpenAI’s CLIP, as the mean cross entropy between the scaled pairwise cosine similarity 
of image and text embeddings and the target matrix, which is an identity matrix of size 
equal to the batch size. As with OpenAI’s CLIP, the scaled pairwise cosine similarity is 
calculated as the dot product between Image Embeddings and the transpose of Text 
Embeddings multiplied by the exponential of a temperature parameter. Temperature is a 

https://arxiv.org/abs/1810.04805
https://keras.io/api/applications/efficientnet/
https://tfhub.dev/google/collections/bert/1
https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/#keras-implementation-of-efficientnet
https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/#keras-implementation-of-efficientnet
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trainable variable which is initially set to 0.07 and its exponential is clipped to a maximum 
of 100 (so as to avoid training instability).  

During the evaluation phase the text encoder receives all possible combinations between 
different attribute types in the form of sentences and matches the image embeddings with 
those sentences. All selected top-1 sentences for each image are transformed into multi-
label binaries and evaluated against the ground truth of the validation set. In the case of 
using only styles and patterns/prints, there were 1840 possible combinations between the 
two. Because patterns/prints do not have a ‘NONE’ option (for the cases where no 
particular pattern is present) the 92 garment styles were also added on their own, resulting 
in 1,932 possible sentences for the multi-label evaluation phase. When using the category 
classification dataset, the 22 classes were given as the potential captions for the 
evaluation phase. 

Similarly to the category classification stage, multiple models and hyper-parameters had 
to be carefully selected in order to access the best possible performance. In terms of 
model selection, we mostly experimented with EfficientNet B3 and B4 which had the best 
performance in category classification, and four small-BERT variants which can be seen 
in table 4-13. Indicatively, Bert-L-4_H-512_A-8 stands for: Small uncased BERT with L=4 
transformer blocks, a hidden size of H=512, and A=8 attention heads.  
The models were optimized with the use of AdamW, or Adam with weight decay, with a 
weight decay value of 0.01, 0.99 for the beta_1 and 0.999 for beta_2. 
 

Table 4-13: Variations of small-Bert utilized as the text encoder. 

Small BERT models Transformer 
Blocks 

Hidden Layer 
Size 

Attention 
Heads 

Total 
Parameters* 

L-2_H-128_A-2 2 128 2 4,385,921 

L-4_H-256_A-4 4 256 4 11,170,561 

L-4_H-512_A-8  4 512 8 28,763,649 

L-12_H-768_A-12 12 768 12 109,482,241 

* As implemented in TensorFlow Hub 
 
Regarding the selection of hyper-parameters, the Learning Rate, Batch Size, Dropout rate 
the number of projection layers and their dimensions had to be tuned. The detailed hyper-
parameter space that we experimented with, can be seen in table 4-14.  
 

Table 4-14: Hyper-parameter space for the conducted experiments 

Hyper-parameter Value 

Learning Rate 1e-3, 1e-4, 5e-5 

Batch Size 32, 64, 128, 256 

Dropout rate 0.1, 0.3, 0.5 

Projection Layers 1, 2, 4, 8 

Projection Layer Dimensions 128, 256, 512 

 

https://tfhub.dev/google/collections/bert/1
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Transfer learning was also used for this task, where we experimented with the following 
approaches:  

1. Using the pre-trained encoders as ‘frozen’ feature extractors  
2. Only fine-tuning the Vision Encoder 
3. Fine-tuning both the Vision and Textual Encoders.  

 
During the time of retrieving the MLZ Attribute dataset, we performed numerous 
experiments with the Image-Text pairs from the category classification. For this task, the 
images and their “product names” - very short descriptions about the product - were used. 
A noteworthy, but expected, insight was that the contrastive model was very sensitive to 
changes in language. When the model was trained on the original, unprocessed, textual 
data (which is naturally diverse and contains synonyms) it would under-perform during the 
evaluation phase. When the original category classes were provided as sentences, for 
example “t-shirts / formal jackets / skirts” etc, the model would under-perform due to the 
fact that it had not encountered these words in this particular form, while changing the 
target sentences (after manual experimentation) to “tee / blazer / suit / skirt”, etc., there 
was an increase of +13%. As a result we chose to alter the training set by replacing all 
important keywords and their synonyms related to the garment categories with only one 
specific word. This way we could know that the target sentences were reflected in the text. 
The exact same process was also applied while retrieving the MLZ Attribute dataset.  

Regarding the hyper-parameter tuning, comparably to the category classification, 
relatively higher learning rates (1e-3) would perform better for the feature extraction 
experiments, medium values (1e-4) when fine-tuning only the vision encoder and low 
values (5e-5) while fine-tuning both the vision and textual encoders. Furthermore, we 
concluded that, unlike the category classification task, the selected batch size was playing 
a significant role during the contrastive learning, effectively working as a means of 
regularisation for the model, with larger values (128 or 256) yielding improved 
performances ceteris paribus. Naturally, the selected batch size was constrained by the 
available memory and the size of the dual encoder network. However, even with larger 
models and while fine-tuning both encoders, we tried to define the highest possible value 
for the batch size (64 or 128). Concerning the number of projection layers and their 
dimension, an output embedding dimension of 256 was found optimal while a higher 
number of projection layers benefited only when both encoders were frozen or when only 
the vision encoder was fine-tuned. On the contrary, a single projection layer was sufficient 
when fine-tuning both encoders. Finally, a dropout rate of 0.3 was found as optimal, and 
the model did not benefit from further regularisation. 

With regards to discovering the better performing transfer learning approach, the initial 
experimentation on the category classification dataset strongly indicated that fine-tuning 
both the vision and textual encoders could lead to significantly higher levels of accuracy. 
Larger BERT variants tended to over-fit and produce very low accuracy scores, while the 
smaller BERT (L2, H128, A2) yielded the best performance. The best accessed result by 
each transfer learning approach can be seen in table 4-15.  
 

Table 4-15: Best performing model for each transfer-learning approach with the 
Category-Level Image-Text dataset. (With bold we denote the best performance) 

Vision Encoder Text Encoder Accuracy F1-Macro 

EfficientNet B3 (frozen) Bert L4, H512, A8 (frozen)  80% 77.5% 

EfficientNet B3 (fine-tuned) Bert L4, H512, A8 (frozen)  83.3% 78.8% 

EfficientNet B4 (fine-tuned) Bert L2, H128, A2 (fine-tuned) 87.7% 85.8% 
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Comparatively, our custom cross-modal vector alignment model was able to reach 87.7% 
in terms of accuracy, while the fully supervised multi-class classification on all 22 garment 
classes reached 92.24%. While the former is lower by 4.54%, we must take into 
consideration that this approach did not require nor utilized annotated data, and by 
leveraging image to text similarities it was able to reach close to the fully supervised 
experiments. This outcome validated the potential usefulness of the approach and 
therefore we proceeded with applying the same workflow to the attribute dataset. 
Unfortunately, similarly high accuracy scores could not be reached on the Attribute-level 
dataset. With the better performing model - fine-tuning both an EfficientNet-B4 and a small 
Bert with L2, H128, A2 - reaching 37.49% categorical accuracy, 40.47% F1 macro and 
35.61% F1 micro.  

Attempting to interpret our custom model’s limited performance on the attribute dataset, 
we initially hypothesised that OpenAI’s and Google’s ALIGN’s impressive performance on 
multiple benchmark datasets was only possible after being trained on approximately 400 
millions and 1.8 billions image-text pairs respectively. These scales are far beyond our 
custom datasets that consisted of 300 thousands image-text pairs. In this respect, in order 
to test this hypothesis and additionally better assess the performance of our custom self-
supervised contrastive model we performed additional experiments with OpenAI’s CLIP 
which has been made publicly available with four different vision encoders, ResNet50, 
ResNet101, ResNet50x4 and ViT-B/32. We experimented with the three following 
approaches: 

1. CLIP as a zero-shot classifier 
2. Linear probing CLIP 
3. Fine-tuning the whole CLIP model on the fashion domain 

 
In the first approach, the CLIP model is called to classify fashion imagery in fine-grained 
attribute classes without being fine-tuned to the fashion domain. The second approach, 
similarly uses the CLIP model but as a feature extractor which features are passed to a 
multi-label linear classifier (a logistic regression model) in a supervised manner. In the 
third approach the training process from the original paper was re-created and the whole 
model was fine-tuned on MLZ’s attribute-level dataset. The detailed results can be seen 
in table 4-16.  

Table 4-16: Experimentation with OpenAI’s CLIP on fine-grained fashion attribute 
detection in comparison with our custom contrastive image-text training model. 

CLIP Task Vision Encoder F1 Micro F1 Macro 

Zero-shot ResNet-50 17.19% 11.60% 

Zero-shot ResNet-101 18.36% 12.41% 

Zero-shot ViT-B/32 19.69% 13.14% 

Linear Probing ViT-B/32 54.9% 46.28% 

Fine-tuning ResNet-50 30.98% 23.61 

Fine-tuning ResNet-101 13.77% 9.07% 

Fine-tuning ViT-B/32 6.82% 4.3% 
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Custom model Encoders F1 Micro F1 Macro 

Fine-tuning EfficientNet-B4 small-
BERT L2, H128, A2 

40.47% 35.61% 

 
Fine-tuning OpenAI’s CLIP expectedly was able to increase the model’s predictive 
accuracy compared to zero-shot classification but it could not improve upon our custom 
contrastive model. Additionally, fine-tuning CLIP showed improvements only when 
employing the smaller computer vision network, a ResNet-50, while larger architectures, 
ResNet-101 and ViT-B/32, overfitted on the training data and their performance 
disintegrated. Our initial hypothesis that a model trained on a huge dataset would 
outperform our custom model was not confirmed. We believe that our collected Attribute-
level dataset is relatively small containing only a few thousand samples for each attribute 
value, and at the same time very broad and diverse, having 1932 possible classification 
outcomes, and therefore it was not sufficient to train a self-supervised contrastive model.  

 4.3.1.2 Multi-label supervised classification 

Due to the fact that the self-supervised image-text training resulted in limited performance 
on the attribute detection task, we proceeded by experimenting with a fully supervised 
framework.  

 4.3.1.2.1 Using the MLZ dataset 

In this instance, the exact same dataset was utilized for this task, with identical training 
and validation sets (AD:MLZ). Since the target classes were not mutually exclusive, this 
was treated as a multi-label classification problem.  

For the supervised framework, instead of using image-text pairs, we used the image-label 
pairs. The labels were transformed into multi-label binaries, and instead of CLIP’s 
contrastive loss function, the sigmoid with the binary cross entropy (BCE) were used as 
the activation and loss functions respectively. In this way the multi-label task is treated as 
multiple binary classification tasks by the network. Additionally, we experimented with the 
soft-F1 loss function [44], in which the F1-score is made differentiable and as a result the 
network can be directly optimized on the F1 score, which is a more ‘class-imbalance-
aware’ metric and mitigates the need for re-sampling the data and secondly it reduces the 
need for searching the optimal threshold during the inference phase [24, 25]. 

In terms of evaluating the model’s performance, the Categorical and Binary Accuracy were 
used as well as the Macro F1 score with a threshold at 0.5. The categorical accuracy 
measures the exact match between the actual and predicted labels while the binary 
accuracy, which is equivalent to the “1 - hamming loss”, expresses the fraction of wrongly 
predicted labels to the total number of labels and is a less ‘strict’ metric. 

On account of having limited time and computational resources we took some insights 
learned during the Category Classification stage as granted. We only experimented with 
EfficientNet B3 and B4 and did not experiment with smaller variants or with InceptionV3, 
Xception or ResNets. Low learning rates (1e-4 or 5e-5) were used during the fine-tuning 
phase and the dropout rate was always set at 0.5 and subtle image augmentations were 
also applied on the input images, with random horizontal flips, random rotations and 
zooms being performed with a factor of 0.1, the same augmentation strategy as in the 
contrastive experiments in order to ensure comparability. On the other hand, an addition 
during the attribute detection phase, was the experimentation with using pre-trained 
weights from self-trained EfficientNets with Noisy Student [26] instead of solely relying on 
weights pre-trained on ImageNet.  

https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
https://www.aclweb.org/anthology/2020.eval4nlp-1.9.pdf
http://proceedings.mlr.press/v54/eban17a/eban17a.pdf
https://arxiv.org/pdf/1911.04252.pdf
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As the results shown in table 4-17 illustrate, utilizing the soft F1 loss function did not benefit 
the model’s training process, resulting in significantly lower predictive accuracy when 
compared with models trained on the binary cross entropy. Furthermore, using the pre-
trained weights from the Noisy-Student paper instead of ImageNet, yielded an impressive 
+3.86% improvement when fine-tuning an EfficientNet-B4 model with the same 
parameters. Attempting to fine-tune more of the EfficientNet’s layers did not improve the 
performance any further thus leaving an EfficientNet-B4 model with Noisy-Student weights 
with 100 re-trained layers, as the best performing model.  

 

Table 4-17: Supervised multi-label classification models for fine-grained attribute 
detection. (With bold we denote the best performance)  

Model Parameters Exact Match Binary Accuracy F1 Macro 

EfficientNet-B3 Fine-tuned layers : 140 
Learning rate : 1e-4  
Batch Size : 64 
Dropout rate : 0.5 
Optimizer : Adam 
Weights : ImageNet 
Loss function : BCE 

78.23 99.61 74.68 

EfficientNet-B4 Fine-tuned layers : 100 
Learning rate : 5e-5  
Batch Size : 32 
Dropout rate : 0.5 
Optimizer : Adam 
Weights : ImageNet 
Loss function : BCE 

78.29 99.60 75.97 

EfficientNet-B4 Fine-tuned layers : 100 
Learning rate : 1e-4  
Batch Size : 32 
Dropout rate : 0.5 
Optimizer : Adam 
Weights : Noisy Student 
Loss function : BCE 

82.15 99.69 81.85 

EfficientNet-B4 Fine-tuned layers : 100 
Learning rate : 1e-4  
Batch Size : 32 
Dropout rate : 0.5 
Optimizer : Adam 
Weights : ImageNet 
Loss function : Soft F1 

68.27 98.86 52.39 

EfficientNet-B4 Fine-tuned layers : 147 
Learning rate : 5e-5  
Batch Size : 32 
Dropout rate : 0.5 
Optimizer : AdamW 
Weights : Noisy Student 
Loss function : BCE 

80.63 99.69 80.56 

 

A final attempt to further improve upon the task of Attribute Detection was the 
experimentation with supervised contrastive learning [27]. This approach takes advantage 
of contrastive training within a fully supervised framework. The model’s training is divided 

https://arxiv.org/pdf/2004.11362.pdf
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into two stages. First a visual encoder is pre-trained with the use of a supervised 
contrastive loss function with the objective of bringing image representations of the same 
class closer together in an embedding space and mapping them further apart from all 
other classes. After that, the pre-trained encoder is freezed, a classification head is added 
on top and is trained with the cross entropy loss. The authors showed that supervised 
contrastive learning was able to improve the model’s predictive accuracy on ImageNet 
while being more ‘robust’ since it required less tuning of hyper-parameters. Our approach 
utilized the N-pair loss function modified for a multi-label problem, as offered by 
TensorFlow Addons [45]. However, the initial experiments with an EfficientNet-B3 model 
with 100 fine-tuned layers during contrastive training yielded a relatively low exact match 
score 53.66% and 38.32% F1 macro at best. It could be concluded that either the 
particular supervised contrastive framework is not optimal for a multi-label task or that 
wildly different hyper-parameters had to be selected. Nevertheless this question is left for 
future investigation. 

 4.3.1.2.2 Using the DeepFashion dataset 

We have also performed a multi-label classification of attributes on the AD:DF dataset. 
The rationale behind this experiment was to explore whether the training dataset size and 
the relatively large number of classes were a contributing factor in determining the quality 
of the predictions in multi-label classification, hence we experimented with the larger 
dataset provided by DeepFashion. The Deepfashion dataset with the matched patterns 
and styles were split into training, validation and testing in 80:10:10 ratio. In much the 
same way as for the AD:MLZ dataset, a multi-label classification was planned for this 
experiment. The experiment was carried out with batch sizes and hyperparameter tuning 
from the experiments carried out with AD:MLZ dataset for more accurate comparison.  

Due to computational limitations, the EfficientNet B4 model was considered for this 
experiment as it was the best performer with the multi-label classification on the AD:MLZ 
dataset. The input shape of (380,380,3) and a shuffle batch size of 1024 was used for 
shuffling the training data by chunks of 1024 observations. The data was autotuned to 
adapt preprocessing and prefetching dynamically to reduce the GPU and CPU idle times. 
Image augmentation with a factor of 0.1 was used in the training process to randomly 
rotate, flip and alter the contrast of the input images. The dropout rate was set at 0.5 
throughout the training process. Both ImageNet and Noisy Student pre-trained weights 
were used in this experiment. The optimizer used was Adam with different learning rates 
(1e-4, 2e-5 and 5e-5),  ‘binary_crossentropy’ was used as part of the loss function 
throughout this process.  

Table 4-18 shows the results of multi-label classification performed with the AD:DF 
dataset. It is evident from the results that usage of pre-trained weights from Noisy Student 
has resulted in a good accuracy score overall, which was the same in case of AD:MLZ 
dataset. However the training process was unstable in this case and it clearly shows that 
the model is significantly overfitting. This can be resolved by editing the learning rate 
value. It can also be observed from the last model that increasing the fine-tuned layers 
results in affecting the performance of the model, which was the case with the experiments 
done on the AD:MLZ dataset. Hence, the EfficientNet-B4 model with Noisy-Student 
weights with 100 re-trained layers can be considered the best performing one on both the 
AD:DF and AD:MLZ dataset. 
 
Table 4-18: Supervised multi-label classification models for fine-grained attribute 

detection - AD:DF dataset. (With bold we denote the best performance) 

Model Parameters Training accuracy 
(in %) 

Test dataset 
accuracy (in %) 

https://www.tensorflow.org/addons/api_docs/python/tfa/losses/npairs_multilabel_loss
https://www.tensorflow.org/addons/api_docs/python/tfa/losses/npairs_multilabel_loss
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EfficientNet-B4 Fine-tuned layers : 100 
Learning rate : 2e-5  
Batch Size : 64 
Dropout rate : 0.5 
Optimizer : Adam 
Weights : ImageNet 
Loss function : BCE 

77.74 71.46 

EfficientNet-B4 Fine-tuned layers : 100 
Learning rate : 5e-5  
Batch Size : 32 
Dropout rate : 0.5 
Optimizer : Adam 
Weights : ImageNet 
Loss function : BCE 

59.88 62.33 

EfficientNet-B4 Fine-tuned layers : 100 
Learning rate : 1e-4  
Batch Size : 32 
Dropout rate : 0.5 
Optimizer : Adam 
Weights : Noisy Student 
Loss function : BCE 

91.98 72.79 

EfficientNet-B4 Fine-tuned layers : 147 
Learning rate : 5e-5  
Batch Size : 32 
Dropout rate : 0.5 
Optimizer : AdamW 
Weights : Noisy Student 
Loss function : BCE 

61.05 64.66 

 

As a point of comparison, FashionNet, proposed in the original DeepFashion paper, was 
able to yield mean scores of 40.52% and 54.61% in terms of top-3 and top-5 accuracy 
respectively on the Attribute Detection task with 1000 attribute categories involving 
textures, fabrics, shapes, parts and styles [3]. More recently Li. et. al., with the use of multi-
task learning, were able to increase the top-3 and top-5 accuracy scores up to 59.83% 
and 77.91% on the same dataset; but with cropped images around their annotated 
bounding boxes [33]. Re-training the best performing network from AD:MLZ on full 
DeepFashion for Attribute Detection showed a restricted performance; with 35.37% top-3 
and 44.87% top-5 accuracy. We believe that further experiments with different hyper-
parameter combinations are necessary to improve this outcome, due to the structural 
differences between DF and AD:MLZ; the former being more imbalanced and consisting 
of 1000 - relatively noisy [46] - attribute classes compared to the 109 of AD:MLZ.    

4.3.2 Further work and planned improvements 

After extensive experimentation with OpenAI's CLIP and our custom cross-modal image-
text alignment we concluded that this direction, while being interesting from a research 
perspective, is not fruitful for further investigation on such a fine-grained task. On the 
contrary, after putting in the effort of collecting an annotated dataset, a fully supervised 
framework was able to reach relatively high rates of predictive accuracy. The presented 
experiments consisted of only two types of attributes, patterns and styles. If considered 
useful and necessary for the next stages, this work could be expanded to include more 
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types of attributes such as the garment’s fit or the neckline or sleeve style for upper-body 
garments, etc.  

For the supervised multi-label classification task, we may consider experimenting with 
specialised pairwise ranking techniques shown to improve a model’s predictive accuracy 
on multi-label classification [28]. Secondly, hierarchical multi-label classification networks 
could be utilized, which are “capable of simultaneously optimizing local and global loss 
functions for discovering local hierarchical class relationships and global information from 
the entire class hierarchy while penalizing hierarchical violations” [29] in order to avoid 
logically impossible combinations on the predicted classes such as predicting more than 
one patterns or styles at the same time.  

4.4 Merged pipeline and inference 

After acquiring the best performing models for each task - object detection, category 
classification and the attribute detection, as shown in table 4-19, we merged them into an 
integrated pipeline. An image is first passed through the object detection models and the 
identified objects are cropped around their predicted bounding boxes. Thereafter, the 
cropped images depicting individual garment items were passed through the category and 
attribute detection models. The end result is a JSON file reporting the identified objects, 
their categories and attributes.  

Table 4-19: The best-performing models for each task that constitute the merged 
pipeline 

Task Model Evaluation Metrics  

Object Detection Faster R-CNN mAP : 80.6 AR@100 : 85.8 

Category Classification EfficientNet-B4 Accuracy : 92.24 F1 Macro : 92.28 

Attribute Detection EfficientNet-B4 Exact Match 82.15 F1 Macro : 81.85 

Below we demonstrate a few visualised samples resulting from each step of the merged 
pipeline: 

Step 1: 

The objects are identified by the trained OD model, a sample is shown in Figure 4-9. 

 

Figure 4-9: Prediction from Trained OD model 

 

 

https://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Improving_Pairwise_Ranking_CVPR_2017_paper.pdf
http://proceedings.mlr.press/v80/wehrmann18a/wehrmann18a.pdf
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Step 2: 

After the identification of objects, the cropping is performed on the desired objects from 
the predicted boundary box, as shown below. The predictions from category and attribute 
detection trained models are detected during this stage (Figure 4-10). 

  

Figure 4-10: Prediction from Trained CC and AD model 
Step 3: 

Finally, all the predictions are integrated into a final image with a unique color code (upper 
body: red, lower body: blue, full body: green, footwear: orange) for identified objects with 
the predictions of categories and its corresponding attributes (Figure 4-11). 

 

Figure 4-11: Final result from the merged pipeline 

Below (Figure 4-12) are a few samples resulting from the merged pipeline: 
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Figure 4-12: Sample of pipelines results with predictions 

From Figure 4-12, it can be seen that the categories and attributes were accurately 
detected. In the top left image the full body dress is detected with ‘a-line’ as attribute which 
is supported by the MLZ taxonomy. In the same image the attribute for footwear is 
projected as ‘court’, which comes under the ‘heels’ category. The majority of the pattern 
attributes apply to all objects, which can be seen in the bottom middle image, where floral 
is the attribute and dresses (full-body) as the category. 

Though the majority of the results were accurate, there were few instances in which few 
attributes were mixed up and there were multiple predictions from the OD model. We 
performed heuristics on determining the threshold value of the object detection and in 
Figure 4-13 are few examples of before and after the threshold value was fixed to 0.99 for 
the OD model: 

Before:    After: 

 
Figure 4-13: Before and After version of OD threshold value fix 

 

4.5 Implementation 
 

This deliverable is accompanied by a video demonstration of the pipeline architecture, that 
shows its performance on a novel set of images (which have been taken from the MLZ 
datasets).  
The subsequent implementation of the D3.1 model, which is planned for use as a 
preliminary step in D3.2 and D3.3 will be carried out using the AWS Sagemaker service, 
which allows for easy deployment of an API endpoint.  

The service allows for easy re-deploying of models at need, so we plan on carrying out 
multiple iterations of the implementation whenever updates are performed, namely when 

https://drive.google.com/drive/u/2/folders/1ObpF2MOvhv0FCSeASyNTI4Ohw8Y_31Gm
https://aws.amazon.com/sagemaker/
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the detection of new attributes will be possible and stronger heuristics for wrong 
classifications will be solidified. 
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5. Conclusions 

The objective of the current deliverable was to extract detailed patterns from fashion 
imagery. Said patterns are to be used in subsequent work to detect the specific content of 
images, which will work as features for the forecasting of fashion trends and 
recommendation systems. To build systems capable of extracting patterns, we developed 
a hierarchical architecture that utilized deep machine learning models for object detection, 
category classification and fine-grained attribute detection. The employed pipeline 
receives fashion imagery and firstly detects the items present in the image, their location 
and their high-level class. Afterwards, the detected items are cropped around their 
predicted bounding boxes and the cropped images are passed through a category 
classifier and finally to a fine-grained attribute detection model. The end result is a JSON 
file that contains the classes of all the items present in the original image classified in mid-
level categories and low-level attributes related to patterns and styles.  

On the technical side, central inquiries for this work package involved the retrieval of 
correctly labeled datasets, handling the issue of class imbalance, identifying the best 
strategies for pre-processing and augmenting fashion imagery and the careful tuning of 
the deep learning model’s hyper-parameters. For all three tasks on the hierarchical 
pipeline, transfer learning techniques were utilized, based on state-of-the-art deep 
learning models pre-trained on large-scale datasets and fine-tuned on custom datasets. 
We performed comparative studies between various models, while carefully tuning their 
hyper-parameters. Furthemore, apart from experimenting on MLZ’s own datasets, we 
performed experiments on DeepFashion, a publicly available and widely used fashion-
related dataset, for the sake of comparability and reproducibility. On the category 
classification and attribute detection tasks we experimented with cross-modal image to 
text alignment methodologies, which would alleviate the need for collecting manually 
labeled datasets. These experiments, while promising on the category classification task, 
had severe limitations on the fine-grained attribute detection task, and were outperformed 
by fully-supervised models.  

After extensive experimentation the developed pipeline consists of the highest performing 
fine-tuned models for each task. More specifically, the Faster-RCNN model for the object 
detection with a mAP score of 80.6, the Efficient-B4 multi-class model for the category 
classification with 92.24 accuracy and the EfficientNet-B4 multi-label model for the 
attribute detection with 82.15 categorical accuracy score, were selected, all trained and 
evaluated on their respective MLZ dataset (see table 4-19). The extracted classes or the 
dense embeddings from the aforementioned models are going to be utilized, along with 
other fashion-related features, during the next phases of the program, namely the 
forecasting of fashion trends and the recommendation systems of garment items and we 
deem the aforementioned performances to be sufficient for these tasks. Each of the three 
tasks can benefit from further work in the preparation of larger and cleaner datasets for 
training, in the modelling and in the heuristics applied after the fact to eliminate wrong 
results, but due to the inherent ambiguity existing in fashion, we are satisfied with the 
results achieved so far and as specified in the implementation subsection, this pipeline 
will be implemented in an iterative process that allows for re-deployment whenever 
improvements are ready to be inserted. 
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