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1 Executive Summary 

The objectives of Work Package 1 of the eTryOn project are the generation of accurate 
and attractive 3D models and the development of a Software Development Kit (SDK) that 
facilitates the communication with the QuantaCorp API and the capture of the required 
data to generate the models. So far, we have investigated the problems with our current 
algorithms and have focused on improving the visual aspects of the models, specifically 
on regions near the head, hands, feet and armpits. We evaluated and tested new body 
spaces to tackle the problems in appearance and we have also improved our 
segmentation algorithm. The general idea of what the SDK should do and how it will 
integrate in the eTryOn applications is laid out. 

In this deliverable we describe the work that WP1 members have put into making the 
avatars more accurate as well as more attractive, and what the next steps are in improving 
accuracy and attractiveness. We also give an overview of what the SDK will look like, and 
how it will be used within eTryOn’s various use cases during the pilot phase. 
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2 Introduction 

The eTryOn project’s main objective is the development of technologies that allow the 
virtual fitting of garments. This would allow people to interact with fashion items in an 
innovative way at the comfort of their own homes. These interactions of humans with 
fashion items (Human Fashion Interaction, HFI for short) can be split up in various 
domains, with at its core the creation of a personalised three-dimensional avatar. 

QuantaCorp’s current technology stack offers a quick way of creating such 3D avatars 
using height and two photos (one of the person’s front in A-pose, and one of the side in I-
pose) as only input. In the past years, QuantaCorp has been focusing mostly on 
developing a platform for business-to-business (B2B) applications, with the main 
emphasis put on the delivery of accurate measurements. More on this can be found in 
chapter 3 where we give an overview of the existing platform. 

Given eTryOn’s objectives and the fact this project is more customer focused, the 
attractiveness of the avatar starts to play an important role. During the eTryOn project, 
QuantaCorp aims to research and develop the technologies that will allow people to create 
an avatar that looks attractive enough to be used in a multitude of HFI applications, while 
preserving the level of accuracy we are able to deliver on our B2B platform. Besides 
improving the avatar’s attractiveness, we will also develop an SDK to integrate the 
communication with the QuantaCorp API in web or mobile applications and facilitate the 
capture of the required input data. 

As mentioned earlier, in chapter 3 we give an overview of the existing platform. The 
existing platform refers to the state of the platform before the eTryOn project started. We 
describe what QuantaCorp's core technologies are, and how we allow other businesses 
to interact with our technology via our API, web portal, and mobile application. 

In chapter 4 we will go over the issues with the attractiveness of the avatar and what has 
been done to address these issues. We go over the improvements done to reduce 
artefacts around the chest area. We talk about the changes made to export the avatar with 
the pose as captured in the photo. We look into how we can improve the quality and level 
of detail of the hands, feet and head. And we discuss an approach to texture the avatar. 

Chapter 5 elaborates on the implementation of a new body space which we conclude to 
be a necessity in chapter 4. After an introduction, we compare QuantaCorp’s current body 
space with the state-of-the-art STAR-model. Next, we discuss alternative approaches for 
the existing matching algorithm. 

Measurement accuracy is the topic of chapter 6. After a brief introduction, we take a look 
at the effects of segmentation on measurements and we explore the upper limb 
measurements and how to refine them. 

In chapter 7 we take an in depth look at the improvements made to QuantaCorp’s 
silhouette segmentation. We dedicate an entire chapter to this topic because pixel-perfect 
segmentation results in more accurate measurements, as was concluded chapter 6. First, 
we introduce the subject of segmentation. Next, we look at the relationship between the 
number of available pixels and the quality of the segmentation and we look into the 
delicate problem of edges. And we end with our conclusions on the progress that has 
been made. 

Chapter 8 covers the development of the SDK. We explain why we shifted from a 
standalone scanning app, to the implementation of an SDK. We explain the 
communication flow between the eTryOn applications, the SDK, the QuantaCorp Cloud 
and the eTryOn Cloud. And finally, we describe how the scanning component will work, 
and what it may look like. 
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3 Platform Overview 

The QuantaCorp sizing platform first came to light early 2016 with the goal to optimise 
business processes by leveraging body measurements in day-to-day customer 
interactions. It allows B2B businesses to work more efficiently by providing a cutting-edge 
body scanning technology that is fast and cost-effective. Today’s cloud platform is offered 
as a completely GDPR compliant platform-as-a-service (PaaS) that aids with the 
digitisation of body measurements. In the past five years it has known a steady pace of 
development, growing into a product that provides a better fit to the needs of our 
customers in workwear, health and retail with every new iteration. 

 

 

Figure 3-1: Overview of our Platform-as-a-Service. 

 

The core technology consists of multiple microservices that interact with one another to 
turn two pictures, a front and a side picture, into an avatar of the person by employing a 
statistical model. The first and arguably the most important component we developed for 
our cloud platform is the public interface that gives access to our core technology. This 
fully documented application programming interface (API) uses representational state 
transfer (REST) to communicate over the world wide web (WWW). It is the base 
component that allows us to develop all other components that make up our platform, and 
allows other businesses to develop their own custom platform if desired. The API allows 
our customers to integrate our solution into third-party systems such as SAP, Microsoft 
Dynamics and plenty of other management systems. 

Though this interface allows businesses to build their own platforms with our technology, 
most of our customers make use of the one we provide. Usually their first experience with 
our platform is through our web portal. In this web application, we provide the user 
interfaces (UI) for a plethora of API features. Customers are given an overview by means 
of a dashboard. Customers can manage their garments and configure the accompanying 
sizing tables or bundle them into collections. The portal also allows customers to manage 
projects and provision projects with size passports. In our platform, information about the 
model, the most common measurements of the 3D model and garment size advice are 
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bundled into what we like to call a size passport. Other portal features include the ability 
to download a size passport’s 3D model and extracting a data export of the size passports. 

In parallel with the web portal, we developed a mobile scanning application that aids our 
customers during measuring sessions. The app is used to capture the pictures of the 
model and communicates with the QuantaCorp cloud services using the API. It is 
developed for the Apple platform and supports both iPhones and iPads. App distribution 
happens via the App Store. Customers are trained and coached in using the app to get 
the best results possible. Its easy-to-use UI allows the user to create and edit size 
passports, take a scan, and consult the scan results and size advice once processed. A 
huge benefit of the app is that it can be used offline. Once a connection to the internet is 
established, the app will automatically start uploading scans to the cloud for processing. 

 

  

When a scan is uploaded via the API, the first microservice that runs is our segmentation 
service. This service takes the colour images as input and is able to segment out the body 
shape, or silhouette, of the model. This segmentation is then outputted as a black-and-
white image and is ready to be used by the next microservice, the matcher service. 

During matching a proprietary algorithm looks for the best possible shape and pose match 
based on the black-and-white silhouettes. This results in a 3D model, for which we have 
a standard set of over one hundred measurements readily available. The final 
measurements are further optimised through our proprietary algorithm. Scan results are 
securely stored away and can now be accessed through the API in the app and portal. 

All members in the eTryOn consortium have been given access to the QuantaCorp 
platform since the beginning of the project. The documentation for our platform and API is 
available at: https://docs.quantacorp.io/. 

For the duration of this project, we chose to work with a fork of our existing platform. Any 
new features, bugs or issues reported by consortium members are addressed on this fork.  

Figure 3-2: Web portal. Figure 3-3: Mobile application. 

https://docs.quantacorp.io/
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4 Attractiveness of the Avatar 

4.1 Introduction 

Considering that the QuantaCorp solution is targeted towards body measurements, it is 
expected that its originally produced 3D models are not very attractive. A big issue is the 
level of detail in the 3D models; this is most prominent in the head, hands and feet and a 
webbing issue near the armpits. During tests performed within eTryOn (i.e. ODLO 
performing scans of their fit models and comparing the resulting avatar with the actual fit 
models) some other issues were brought to our attention that affected the attractiveness 
and measurements extracted from the avatar. In this chapter we focus on the problems 
regarding the attractiveness of the avatar, while more on measurement accuracy can be 
found in chapter 6. The first reported issue is the presence of artefacts near the chest area 
and confirmation of armpit webbing. A second reported issue is the shape of the legs. 

 

 

Figure 4-1: Example of a 3D model. 

 

Besides the mentioned defects of the 3D mesh, our avatars are exported without texture. 
To further increase the avatar’s attractiveness, we looked into a way of giving the avatar 
a livelier look by generating a texture using the original colour images.  
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4.2 Chest Improvements 

In our initial investigation of the artefacts near the chest area, we concluded that they were 
caused by the degree of freedom that was given to the matcher algorithm. Giving the 
matcher its freedom allows the algorithm to optimise for measurement accuracy, though 
this could result in a disparity between the statistical body shape and the actual body.  

 

Figure 4-2: The area below the chest clearly shows an artefact. 

 

To reduce artefact creation and deliver 3D models with more attractive and representative 
body shapes, we branched off a separate matcher service for eTryOn to address this 
problem. In this branch we put up constraints which keep the matching algorithm in check. 
Even though this did result in a better-looking shape, we realised this is a less than ideal 
solution and should not be the accepted solution for this problem. The reason being that 
we were sacrificing accuracy for attractiveness since bodies that heavily deviate from the 
average body cannot be expressed by the limited shape parameters. In order to keep the 
same level of accuracy with an improved avatar attractiveness, we evaluate our current 
body space to state-of-the-art body spaces With the current body space we mean all 
possible bodies that can be generated by QuantaCorp’s PCA model.   

4.3 Pose Improvements 

Besides the artefacts on the chest, the evaluation through the ODLO fit models 
comparison also indicated that the avatars suffered from what they described as X-legs. 
It is the bending of the legs in such a way that when you draw a line following the legs, 
you get two outward curves, effectively forming an X when the knees touch. 
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Table 4-1: Exported pose vs. matched pose. 

Exported Pose Matched Pose 

 
 

 
 

 

Upon further investigation the issue seems an accumulation of errors. The first problem 
being the exported pose in the QuantaCorp system is a preset neutral pose. This neutral 
pose introduces X-legs. The second problem is related to the matching around the knee 
area. Sometimes the matching in this area is less restrictive than for instance chest 
matching. The matching algorithm allows for the reprojection to go outside of the 
segmentation, if that provides a better match in the upper body. The third issue is related 
to the camera perspective that is used during the image acquisition process.  

We added a feature to our dedicated eTryOn matcher that allowed us to export the model 
in its matched pose. When looking at the resulting avatar, we could still see the presence 
of the leg artefact. As a conclusion we would say that this issue is partially caused by 
matching. This gave us a second reason to investigate alternative body spaces. 

4.4 Hands, Feet and Head Improvements 

QuantaCorp's previous body space has been created with the extraction of specific 
measurements in mind, rather than visual attractiveness. Certainly, the quality of hands, 
feet and head reconstruction were ignored since no measurements are extracted in these 
areas.  
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Table 4-2: Level of detail near head, hands and feet. 

Problem Area Comments 

 

The hands are missing fingers and are 
reduced to a chunked flat disk. 

 

 

Facial features are almost completely 
gone. We see some relief where the nose 
is supposed to be. 

 

Model shows incomplete feet. Chunks are 
missing in the front or in the side. 
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Within the context of this project the reconstruction quality of hands, feet and head does 
not suffice because the model is used for visualization purposes. We considered two 
different approaches to improve on this: (a) directly repairing meshes and (b) exploring 
alternative body models that better model hands, feet and head.  

Automatically repairing meshes in an efficient way is a challenging subject. When 
modifying a mesh, it is important to avoid the introduction of self-intersecting primitives, 
non-manifold issues and other requirements regarding the mesh topology. This is 
achievable by editing the point cloud rather than the mesh and later fully reconstructing 
the mesh [4.1]. However, the actual point cloud/mesh modifications as well as surface 
reconstruction require a computationally intensive processing. Additionally, it results in a 
new mesh topology so also the UV-layout of the texture becomes invalid. This requires an 
automated way to generate a new UV-layout. In an attempt to overcome the listed 
problems, we started exploring alternative body models.  

Instead of applying fixes directly on the mesh, we have decided to switch to a new body 
space. By directly matching bodies that do not exhibit these artefacts, the visual quality is 
higher and the processing time is considerably lower than applying the heavy mesh 
operations. More details on the specific artefacts and the solution by switching body 
spaces are described in chapter 5. 

4.5 Texturing 

QuantaCorp's processing original pipeline produces scans without any colour information 
included. Via an internal tool we do have the possibility to visualize a textured 
representation by projecting the front and side image onto the model. 

 

 

Figure 4-3: Projected textures of a scan taken under lab conditions. 
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However, there are two challenges. First, there is no method available to export the 
represented model into a texture map. Second, the reprojected colours coming from the 
front and side image might not match due to pose variations and deviations in camera 
calibration. These challenges together with the proposed solution, will be presented in this 
section.  

4.5.1 Exporting Projectively Texture Mapped Models 

In the current processing pipeline, no colour information is exported. For development and 
evaluation purposes, an internal tool is available that visualizes a coloured model by 
projecting the captured images directly onto the model and blending areas of overlap. A 
projective texture mapping approach is taken to achieve this. This is possible since we 
have the all the relevant data available: 

● digital model of the person 
● front and side image 
● camera calibration parameters (intrinsics) 
● position and orientation with respect to the digital model of the person (extrinsics) 

Directly exporting the colours coming from the projective texture mapping is not possible. 
We would need to find a way to (a) decide which colour blend should be assigned to a 3D 
location and (b) a way to store the results. Storing the results can be achieved by building 
a UV-layout for the model and storing the colours in a single texture image. Automatically 
creating a UV-layout can be difficult. Fortunately, in our case this can be achieved 
manually because this step has to be executed only once for the model we use. Changing 
the shape and pose parameters of the model does not require an updated UV-layout. 
Hence, in this paragraph we will focus on how to determine the right colour for each pixel 
in the texture, also referred to as a texel. 

The goal is to fill a texture given a 3D model with UV-layout, pictures taken from different 
views together with their corresponding extrinsic and intrinsic camera parameters. The 
proposed steps are as follows: 

1. Create a texture where each pixel gets a unique RGB value. Since there are 256 
x 256 x 256 = 16 777 216 different values possible without even using the alpha 
channel, a texture atlas of 4096 x 4096 can be created. See figure 4.4. 

2. Render the textured model with the coded texture map to all the views where a 
picture is taken. Use the camera extrinsics and intrinsics to have correct 
projections. Disable texture filtering to avoid blending different texels. Each pixel 
in each view should show a single value of the texture, not a mixture of multiple 
texels. In case the texture resolution is too high compared to the pictures, the 
resolution of the rendering should be increased.  

3. Render the model again with a purely white material, diffuse shading and a single 
point light source in the camera. White pixels indicate that the orientation of the 
triangle is perfectly perpendicular to the viewing directions. Black (foreground) 
pixels indicate that the orientation is perfectly parallel to the triangle. These values 
can be used as weights to blend colour values of different views.  

4. For each render, a map can be created to map a colour code to a list of pixel 
coordinates. 

5. For each texel in the texture, search for the corresponding pixel coordinates in the 
different views. Calculate the texel colour by taking the weighted average of the 
corresponding colour values in the different views. Weights are the intensity values 
of the diffuse shading. Note that a single texel can have multiple corresponding 
pixels in a single view. Preferably the average is first calculated per view and then 
averaged out over the different views. The average weight per view should also be 
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taken into account when blending multiple views (since we do not want an equal 
contribution per view).  

 

Figure 4-4: Illustration of a digital 3D model, textured with a coded texture and 
virtually rendered from the front and side. This is used to find the relation between 

captured pixels and texels in the texture. 

 

Potential challenges are (a) limited colour codes limiting the maximal texture resolution 
and (b) invisible texels, such as the back of the person, that cannot be filled in. The texture 
dimensions limit to 4096 x 4096 can be solved by including the alpha channel. By 
employing the additional channel, the number of codes can be increased by a factor of 
256 (factor 16 for width and height separately), yielding a resolution of 65536 x 65536. 
Alternatively, or in combination with the former method, we can also assign only colour 
codes to texels that are actually referenced to boost the texture dimensions even more.  

The proposed method has been conceptually created but has not effectively been 
implemented because of the findings described in the next section and the alternative 
solution agreed with the project partners.  

4.5.2 Projection Artefacts 

Even with the previous techniques allowing the projectively texture mapped results to be 
exported to a commonly used file format, such as OBJ and a PNG containing the texture, 
there are more fundamental issues. More in particular: 

1. Material properties that exhibit view-dependent reflections does not allow for 
blending colours. 
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2. The dynamic nature of the person between views can cause misalignments. For 
instance, pose changes by muscle fatigue, breathing and facial expressions can 
change between different image captures. 

3. Hair is very hard to model correctly. We capture a mixture of foreground and 
background colour, so a person with black hair and white background will get white 
and grey spots in the hair. 

4. Illumination changes due to uncontrolled light sources can throw off the results 
very easily. Uncontrolled light sources must be interpreted broadly as it covers 
flickering of light sources, clouds moving in front of the sun, changing shadows 
and many more. This can only be partly prevented without using a professional 
photo studio. 

Based on our findings and expertise, we highly doubt if generating photorealistic texture 
maps can be done with the current setup. A specialised studio would be required to 
achieve the aspired photorealism, which is outside the scope of the project. The solution 
to this is described in the next paragraph. 

4.5.3 Solution 

The main reason for rejecting this proposed texturing method is the lack of detail in facial 
features like hair, eyes, nose and lips. On the other hand, a better solution may be found 
in the use of a hand-made texture. This artistic interpretation will keep it accessible for the 
broad public and will not require a specialised studio filled with expensive hardware. It will 
be the closest we can get to generating photorealistic texture for the avatars. The solution 
of using artistic renders will be developed and put to the test in a later stage of the project. 

Apart from being textured, the final avatar requires to be rigged so it can be posed and 
used for dressing. The obtained mesh is fed to the rigging service developed by Metail, 
which registers the mesh against a template model. This registration, as shown in figure 
4.5, adds some visual features to the mesh, like detailed hands and feet, and a generic 
texture. The skeleton of the rig matches the body shape of the source mesh. 

 

 

Figure 4-5: The QuantaCorp mesh gets processed by Metail's pipeline resulting in 
a rigged avatar. 
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5 Integration of New Body Space 

5.1 Introduction 

In chapter 4 the attractiveness of the avatar was discussed. Chapter 5 will give a detailed 
explanation on how to solve these problems. In order to improve the current QuantaCorp 
body space (all possible bodies generated by the current QuantaCorp PCA model) the 
input data would have to be examined. Once all problems with the input data are fixed, a 
new body space could be created. The current QuantaCorp body space is generated by 
using scans from the CAESAR database [5.11]. Some of the more obvious problems are 
detailed in the following table 5.1. 

 

Table 5-1: This table shows the shortcomings in our CAESAR scans. 

Problem area Comments 

 

Feet reconstruction 

 

Hole filling is needed in the armpits 
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Hand reconstruction 

 

 Chest holes 

 

Observing that all the input scans show these types of problems, we would have to fix the 
complete CAESAR set in order for us to create a body space where these problems are 
less prominent. Note that in literature there are several ways to do this like A survey on 
algorithms of hole filling in 3D surface reconstruction. Visual Computer [5.5], A robust hole-
filling algorithm for triangular mesh [5.2] and Template-Based Mesh Completion [5.1]. 

Considering that fixing all our input data would take a long time, and even if we did it in an 
unsupervised way we would still have to check every avatar, we decided to first investigate 
alternative models. In recent years SMPL: A skinned multi-person linear model [5.3] has 
been gathering a lot of traction. A new iteration on the SMPL model was released in 2020, 
namely STAR: Sparse Trained Articulated Human Body Regressor [5.8]. After doing initial 
experiments with the STAR-model, several observations were made. First of all, the 
resulting avatars did not have any unwanted holes or artefacts. Second, the attractiveness  
of the avatars was also increased. 

In section 5.2 a further comparison between the STAR-model and our current body space 
will be made, while answering important questions; can we integrate STAR without any 
real hiccups? What are the implementation problems we encountered? Does STAR offer 
the same accuracy in measurements than our current body space? 

Section 5.3 will detail several alternatives for our current matching approach. In this 
section we will compare results from several matching methods, taking into account the 
state of the art. 

5.2 Body model 

Given the limitations that were described above with the current QuantaCorp body model, 
we investigated the state of the art for new body models. The two contenders that we 
found were SMPL and STAR. We choose to continue with the STAR model for the reasons 
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outlined in the STAR-paper. The paper claims there are three main advantages of STAR 
versus SMPL: 

First, SMPL has a huge number of parameters resulting from its use of global blend 
shapes. These dense pose-corrective offsets relate every vertex on the mesh to all the 
joints in the kinematic tree, capturing spurious long-range correlations.  ~Abstract, STAR 

Second, SMPL factors pose-dependent deformations from body shape while, in reality, 
people with different shapes deform differently ~Abstract, STAR 

Third, the shape space of SMPL is not rich enough to capture the variation in the human 
population. We address this by training STAR with an additional 10,000 scans of male and 
female subjects ~Abstract, STAR 

Given that our current input data for our body space is the CAESAR set, the resulting 
avatars will have the same problems as our input data. In any data driven method the 
resulting method will only be as good as the data it is trained on.  

From the paper we conclude that from a theoretical perspective we expect the STAR-
model to outperform our current body space. Both in attractiveness and measurements. 
In the next table you can see the relative improvements of the STAR avatars. 

 

Table 5-2: This table visually compares the current QuantaCorp-body space with 
the STAR-model. 

QuantaCorp’s Current body space STAR-model 
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Next comes up the question: How do the body measurements compare versus our current 
body space? In order to give a good answer on this question, several steps have been 
undertaken. First, we had to integrate the new body space in our existing code base. In 
section 5.3.2, we will take a closer look at this integration.  

In our results comparing the latest version of the original body space with the first 
implementation of the STAR-model, we found that the STAR-model has a positive impact 
on the results when comparing all torso measurements. The comparison happened on an 
internal validation set for which we have ground truth 3D scans. The validation set was 
evenly distributed between men and women. These measurements start around the 
trouser waist and go up towards the chest area. 
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5.3 Silhouette-based matching 

5.3.1 Introduction 

The digitalization of human bodies is a difficult task. As a first option, there is the possibility 
to 3D-scan the human body. This scan would make use of one or more sensors that are 
capable of capturing depth information. In particular structured-light stereo techniques 
come to mind and more recent LiDAR technology. The captured images then have to be 
registered in a global space and the human body can be reconstructed. However, these 
setups have a couple of downsides. Multiple high-quality sensors are expensive, moreover 
they have to be set up, calibrated and the data has to be processed. 

As a second option, body matching tries to infer human bodies from RGB pictures. The 
main idea here would be to start from a predefined parametric body model, like STAR, 
SMPL or SCAPE [5.10]. In a next step we would have to define the amount of available 
input data. For the method we currently use this is two pictures and the height of the 
person. From those pictures we derive silhouettes and it is those that we will try to fit to 
the parametric body model. From a more general point of view, this is called the prior-
information. As part of the scope of eTryOn, we have also looked at expanding the prior 
information we currently use. For instance, BMI, 2D joint points, extra views are all 
candidates to improve our current methodology.  

The main question here is how do we fit our prior information to these parametric body 
models. There are three main approaches that could be followed for this, and we will look 
at two of those more closely in this chapter.  

The first one is an optimisation-based method. In this case, traditional optimization 
techniques are used and a certain energy function is either minimized or maximized. A 
few techniques that are very well described in the literature are iterative methods 
(Newton’s method, gradient descent, line searches, trust regions, etc), while alternatively 
there are also heuristic-based methods (simulated annealing, tabu search, genetic 
algorithms, swarm optimization, etc). These techniques can be a differentiator, since they 
all have upsides and downsides. How the prior information is used in the objective function 
and thus how the objective function is defined, is very important for these methods.  

The second option to infer human bodies from prior information is by using CNN’s. 
Recently, the state of the art has been expanded with a number of very interesting papers 
which all use some sort of prior information combined with different loss functions to build 
a neural network that can infer both the shape and pose parameters of the parametric 
models. Although many methods exist, here we take a closer look at HS-Nets: Estimating 
human body shape from silhouettes with convolutional neural networks [5.4] and Towards 
Accurate 3D Human Body Reconstruction from Silhouettes [5.6]. Both methods define a 
network which is then trained with artificial data.  

A third option would be to not use a parametric body model at all. In this case, there are 
also multiple options possible, but mostly the prior information is used to derive new data. 
As an example, a CNN might be trained to infer depth information from RGB’s. In Moulding 
humans: Non-parametric 3D human shape estimation from single images [5.7] point 
clouds describing human bodies are estimated from RGB images. These methods are 
typically limited by the resolution of the output grid and cannot produce detailed estimates, 
and as a result, will not be further explored in this document. 

In the scope of the eTryOn project multiple papers and methods were evaluated. The goal 
was to improve our current methodology and obtain better results. Better results are 
defined as human bodies who have realistic shapes and for which the measurement error 
falls under or equal to 1 cm. In the next subsections, those efforts will be explained. 
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5.3.2 Generating and Comparing Silhouettes 

For silhouette-based matching, a scoring function is needed to compare the expected 
silhouette with respect to the silhouettes of the 3D model. Therefore, given the 3D mesh 
of the model, virtual silhouettes need to be generated. We have achieved this by building 
a rendering tool that employs the GPU to increase the processing speed. 

The silhouette rendering tool that has been developed creates binary masks containing 
black and white pixels, indicating respectively background and foreground pixels. The 
input parameters are the 3D model, camera position and orientation with respect to the 
model (extrinsics) and camera and lens properties (intrinsics).  

Besides the required parameters listed above, we have also added an optional vertex 
selection mask. This has been integrated to indicate which vertices of the model should 
and should not be visualized. The selection is performed directly on the GPU. We have 
included this mask to exclude upper limbs of the model when producing virtual side pose 
silhouettes. Since the arms of the person should be close to the body when scanning the 
side pose, they should not be visible in the side pose silhouette. However, during the 
matching process it is possible that deviations in arm poses would occlude the projections 
of the body. We have solved this by excluding these areas in the 3D mesh during 
rendering. 

When the virtual silhouettes are created, they are compared to the silhouettes extracted 
from the captured images. In the current implementations we use Intersection over Union 
(IoU). IoU is calculated as follows: 

● Intersection of the two masks by applying the AND operator 
● Union of the two masks by applying the OR operator 
● Count the number of white pixels in the intersection mask and divide by the number 

of white pixels in the union mask 

In addition, we have built an adapted version of IoU that punishes overshoot. This 
punishment is used as an incentive for the loss function to stay within bounds of the 
segmentation masks. 

5.3.3 Genetic Algorithms 

In this subsection we start from a genetic algorithm as an optimization technique. A genetic 
algorithm is a metaheuristic which is part of the bigger group of evolutionary algorithms. 
The base idea being to mimic natural selection in software. There are a couple of base 
operators which have many different implementations but all have the same concept. 
Examples of operators are selection, crossover and mutation. 
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Figure 5-1: This diagram shows the base building blocks for a GA-algorithm. 

 

Applied to our problem we start by defining a couple of variables. 

• Number of generations 

• Number of shape and pose variables 

• Number of solutions (or bodies) per generation 

 

First, we start by generating our first population, random bodies are made which are 
evenly distributed over the search space. Each body has been given a random shape 
which is evenly distributed between [-3, 3]. 

The pose solutions are further restricted by the pose bounds. This is a JSON file where 
per STAR-model joint the allowed angles are defined by using a lower and upper bound. 
For each pose coefficient we then generate an even distribution. The combination of these 
two variables gives us our initial generation. The population of this generation can be 
anywhere from 128 - 5012 bodies.  The number of solutions per generation is only limited 
by the amount of memory the GPU can feasibly handle. 

Per generation, a fitness assignment has to be made. This is the equivalent of an 
objective/loss function that results in a number being assigned to each solution in the 
generation. In the current implementation there are two loss functions implemented, the 
IoU and IoU with extra punishment for overshoot as described before. 

First, we need to select the “parents” of this generation. In this case, we select the best 
scoring solutions in the whole generation. Next, crossover will use these parents to make 
offspring. This offspring represents a merger between two parents. There are multiple 
techniques of crossover, currently we use fixed point crossover with the fixed point being 
the middle of the array of shape or pose coefficients. 

The offspring that was made in the last step with the crossover operator, will also get 
mutated to introduce new solutions to the population. Currently the mutation is dependent 
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on the index of the current generation. If we are at the start of the run, multiple values will 
be selected for mutation, while at the end of the run this will be reduced to one value. The 
magnitude of change also differs at the start versus the end of the run. Both shape and 
pose coefficients are mutated. 

After mutation we use the offspring and parents to create a new generation and we 
continue with that generation in the next step. Then we go back to fitness calculation with 
the newly created generation. 

In the first version of this algorithm, IoU scores of 94% were achieved. This is rather good 
since we can never expect a 100% match, due to real life attributes like clothing. In the 
following image you can see the match results indicated in light blue while the ground truth 
for this scan is indicated in white.  

 

 

Figure 5-2: This image shows a matched result achieved by the first 
implementation of our GA algorithm. 

 

The measurements for this scan are validated against the same person being scanned in 
a 3D-booth. The silhouettes for matching are reprojections of this 3D scan, so as to avoid 
any sort of pose variation or segmentation issues.  

The method was further refined and several avenues of future work were documented and 
will be further explored. 

5.3.4 Machine learning 

As mentioned in the introduction to this chapter, two papers, which both utilize CNNs for 
inference of human body shapes were explored. In this subsection we will discuss the 
achieved results achieved by both papers. 
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5.3.4.1 HS-Nets 

Seminal work in the field to estimate shape and pose parameters from silhouettes are the 
HS-Nets [5.4], which is presented by Dibra et al. The results claimed in this paper are very 
promising and thus we decided to further explore this within the eTryOn scope. 

The network architecture for the HS-Nets is shown in the following figure (image from 
[5.4]). The paper explores several ways to input images to the network both scaled and 
unscaled. One view or two views, the traditional A and I poses. The result from the network 
is an estimation of the shape parameters of our parametric model. 

 

 

Figure 5-3:  Block diagram of the proposed architecture in the Dibra paper. 

 

We want to note that the results in this paper do not use the STAR-model as source of 
training data. It is our hypothesis that using the STAR-model, which is capable of 
generating more realistic human shapes, should only further improve the results.  

In order to train the model, a lot of data had to be generated. The first iteration of this 
method used 40 shape parameters, 1 pose (consisting of 72 pose coefficients) and 1 
camera pose (both rotation and translation vector). Around 100k male bodies were 
generated using the STAR-model. This was then trained and our initial observation was 
that the training was very slow. This is to be expected due to the amount of data used and 
the nature of the network architecture.  

The definition of the loss function we used, can be found in the paper. A loss of 0.5 was 
achieved in our experiments. The results were validated by using a validation set (which 
is part of the 100k initially generated bodies, these bodies were not used in training). The 
inference time is relatively fast <= 1 sec (i7, RTX 2080TI). Although we stopped training 
early due to time constraints, the results are rather promising. The next images will show 
some of the results. 
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Table 5-3: This table shows the results of our implementation of the Dibra paper. 

HS-Nets Comments 

 

Belly is undermatched 

 

Shoulder is undermatched 

 

Pixels are missing around the chest area 

 

Given more training time, it should be feasible to generate a model which does not have 
these problems. Nevertheless, it still seems to be a long shot to use this approach in a 
production environment due to varying camera poses. It is not always realistic, especially 
not in the eTryOn context, to force one camera pose or variations around this camera 
pose. Future work for this method may include further training, introducing more camera 
poses, shape parameters, pose parameters and evaluating silhouettes taken from real 
scans. 

5.3.4.2 Towards Accurate 3D Human Body Reconstruction from 
Silhouettes 

The method presented in [5.6] was implemented and evaluated as well. Initial results show 
that this model also scores well when trying to match inputs generated by the STAR-



eTryOn-951908 

Filename: eTryOn_D1.1_final.docx  Page 31 of 45 

model. Furthermore, efforts are made to match against our validation sets. The evaluation 
of this approach is still work in progress and will be further explored in the future.  

5.3.5 Conclusion 

In section 5.3 there are two main innovations put forward. First a new body space was 
tested, implemented and evaluated against current QuantaCorp systems. This body 
space has generated better results than our current body space. Going forward 
QuantaCorp will use the STAR-model for any eTryOn related activities.  

Secondly several novel methods for human pose and shape estimation have been 
explored. These methods differ significantly from the current methods used at 
QuantaCorp. At the time of writing, a decision has not yet been made on which method 
will be used for the eTryOn project.   
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6 Measurement Accuracy 

6.1 Introduction 

In chapter 6 we present the issues encountered so far in regards to the accuracy of 
measurements. 

We dedicate section 6.2 entirely to segmentation as it is a very important topic in regards 
to getting pixel-perfect silhouettes, which translates into increased accuracy. 

In section 6.3 we discuss the issues with the upper limb measurements, and we explain 
why this is a hard problem to solve. 

6.2 Segmentation 

In this section we want to stress the importance of pixel-perfect segmentation. To do this, 
we demonstrate the sensitivity to missing pixels in the segmentation when using the 
QuantaCorp method. There are many variables at play here and before continuing, we 
want to stress that the findings in this topic are only valid for these variables. Specifically, 
we will assume certain camera parameters. Obviously for other camera parameters the 
results will be different. 

In this scenario we are going to introduce the following variables: 

● FOV: 60.54 degrees 
● camera distance to person: 221 cm 
● camera height: 110 cm 
● image width: 480 pixels 
● image height: 640 pixels 

 

These variables may differ per scan, depending on the method, so these variables might 
be an approximation of the real values. (and thus introduce errors). We further restrict this 
example by picking a scan which has near perfect matching and then we look at one 
particular circumference at a certain height on the body. From this we are able to derive a 
linear pixel per cm rate.  

● pix_per_cm = 2.518 [pix]/[cm] 

● cm_per_pix = 0.397 [cm]/[pix] 

 

In further research, pixels were added and subtracted to the segmentation to see what the 
impact is on the measurements. This happened within the scope of the eTryOn project 
and the broader scope of improving our measurements.  

6.3 Upper Limb Measurement Refinement 

An issue that aroused by the evaluation of the ODLO fit models scanning is the inaccurate 
measurement of the upper limbs. The biceps measured on the avatars of every model 
was off by more than the accepted accuracy tolerance of two centimetres. Correctly 
measuring the arms is a particularly tricky task. When creating the black-and-white 
silhouettes, we lose the information necessary to properly match the arms. Though this is 
a known issue, up until now this was never brought up by our existing clientele. ODLO, 
being a brand with sports clothing, is more concerned about tight fits. We usually deal with 
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distributors and manufacturers of workwear clothing, which tend to be loose fits. ODLO 
informed us on the importance of the biceps measurement for the garment's sleeve fit. 
Although we already briefly looked into these reported issues, further investigation will be 
needed in future work. 

 

 

Figure 6-1: In the image on the left, we can clearly see a distinction between the 
person's arm and torso due to the difference in colour and shading. 

Moving to the right we can see this information is lost. 

 

One approach could be to expand our segmentation algorithm so it can deliver more 
information to the matching algorithm. This would entail segmenting only the limbs and 
would result in the creation of a third black-and-white segmentation image, just for the 
limbs. We would then need to leverage the information of this new segmentation image 
during matching. The details of this initial idea still have to be worked out, but the 
underlying idea is expected to give better measurements for the upper limbs. It is also 
important to note that this suggestion is very time and labour intensive. To be able to 
expand our algorithm, we would have to manually segment thousands of pictures. 
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7 Silhouette Segmentation 

7.1  Introduction 

In the previous chapter 6 in section 6.2, segmentation was brought forward as one of the 
main detractors of accuracy with the current QuantaCorp method. The basis of the method 
assumes that in the input silhouettes only the human body is segmented. To make the 
problem even more challenging, we will have absolutely no control over the background 
against which the images are being taken. As a result, the need for accurate, almost pixel-
perfect segmentation arises that is very robust against many different backgrounds. 

In general, there are several methods that are available for background removal like the 
more traditional methods including grab cut, watershed or graph-based segmentation. 
Although these methods might perform well, they sometimes require extra attention based 
on the exact situation. In the current state of the art, these tasks are all completed by 
neural networks. Specifically, for binary segmentation, U-Net succeeds in reaching very 
high accuracy combined with a certain level of robustness. 

At QuantaCorp we have been using a U-Net-based method (U-Net: Convolutional 
Networks for Biomedical Image Segmentation [7.1]) for several years. This method has 
been proven to deliver high accuracy in many cases. That being said, the network is not 
perfect. Sometimes it is possible to have “artefacts” in these segmentations. These 
artefacts can be seen as both false positives and false negatives. In order to produce as 
accurate avatars as possible, it was decided to further improve our segmentation methods.  

In any scenario, performance constraints are applied. For us this means that the inference 
time of our networks has to be low enough so we have plenty of time to do body matching. 
There is a direct relation between inference time and resolution. The same can be said of 
the relationship between number of available pixels and quality of the result. Resolution is 
thus very important and in the next section 7.2 we will tackle this topic. Section 7.3 will 
deal with the very delicate problem of edges. From a more technical point of view, the 
following question arises: When is a pixel considered to be background or human? 
Especially if that pixel is around the edge of both borders. In section 7.4, we will present 
the achieved results with these proposed methods. 

7.2  High Resolution 

While resolution is very important in order to increase the quality of the scanned models, 
the scanning process has to perform under very strict time constraints. Not only that but 
we also need to be mindful of the bandwidth used by our customers who only have access 
to mobile data (4G, 5G). For achieving the highest possible accuracy, we would like the 
highest available resolution. In addition, we also want to know everything there is to know 
about the camera with which the pictures were taken. These are modelled with the use of 
extrinsic and intrinsic camera parameters. 

In our experience it is impossible to fulfil all the needs lined out in the previous paragraph. 
Take into account that there are also extra variables over which we have very little to no 
control. These variables include but are not limited to lighting, reflecting objects, very 
complex backgrounds, unusual poses and others. We try to solve these problems directly 
but some of them are solved indirectly.  

Currently we have very tight control over the cameras used with our platform and we know 
all the relevant camera parameters. This means we also know what resolutions are 
available and against which framerates. These pictures then have to be uploaded to our 
services. On average this ends up being a ~ 30 mb payload for two 4K pictures.  
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We had to make several changes to our backend, in order to process multiple incoming 
requests, especially if these requests all contain 4K-scans. In the next paragraphs these 
changes are detailed. Given the requirements laid out earlier, we have decided to make 
our platform more dynamic. Users can and are recommended to upload high resolution 
images but can still use low resolution pictures if they want. This also introduces the need 
for a decoupled architecture. For high resolution images we will want to do a refinement 
step, for low resolution images the service will stay the same. 

In chapter 3, it was already made clear that when images are sent to our service a 
“responder-daemon” does an initial processing of these images. The current segmentation 
flow is very much in sync with the current responder. This holds us back to scale the 
inferences made by our models. We need a decoupled architecture so we can scale both 
horizontally and vertically. In a general software architecture approach this means 
introducing queues and messages between services.  

In this aspect we are converting the segmentation to a micro-service which is then 
scalable. At the end of the responder call, a message is published with the relevant UUID 
to a “SegmentorQueue”. A daemon is introduced that constantly polls this queue for new 
messages. If one appears, inference starts. It is possible to spin up multiple daemons, 
polling the same queue. The same will happen with whatever our refinement step is after 
segmentation. We introduce a refinement queue on which messages are placed and 
polled by a refinement daemon. 

7.3 Edge Refinement 

In the state of the art there are several novel ways to approach the problem of edge 
refinement of existing segmentations. Aside from improving upon the existing models by 
introducing new architectures, existing networks have taken on the challenge of improving 
existing segmentations. In particular we considered RefineNet: Multi-path refinement 
networks for high-resolution semantic segmentation [7.3] and more recently CascadePSP: 
Toward class-agnostic and very high-resolution segmentation via global and local 
refinement [7.5] and SegFix: Model-Agnostic Boundary Refinement for Segmentation 
[7.4]. 

 

In this section we will focus exclusively on CascadePSPs, its implementation and 
evaluation within the QuantaCorp environment. The following image shows the potential 
of the CascadePSP architecture and is taken directly from the paper.  
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Figure 7-1: This image is provided by the authors of [7.5], showing the 
improvements. 

 

As you can see the goal of this paper is very clear: improve existing segmentation for 
which you have high-definition input images. Given the new architecture introduced in 
section 7.2, we now have the 4K-images for each of our scans. This enables us to apply 
this extra refinement step after initial segmentation has happened. 

The code and pre-trained models for this technique are publicly available and can be found 
at https://github.com/hkchengrex/CascadePSP. In this section, we will look at the off-the-
shelf performance of the PSPCascade. While the performance seems already rather 
good, if it proves inadequate, we will consider modifications or re-training of these 
techniques in the future for further improvement. 

The next table shows the comparative difference between a front scan that has left our 
current segmentation pipeline and one that is refined with the PSPCascade method.  

  

https://github.com/hkchengrex/CascadePSP
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Table 7-1: This table compares the result before and after refinement, for the front 
pose. 

Original PSPCascade Comments 

 
 

This is the zoomed-in right-
arm of a colleague. Notice 
how the sharp edges that 
are clearly visible in the 
original segmentation are 
completely gone. The 
armpit errors are also 
completely solved. 

  

 

  

This one is of particular 
interest to us, specifically 
for the measurement 
crotch_height or inseam. 

 
 

Here we notice a problem 
with the CascadePSP and 
our mat. This will have to 
be fixed in post-processing. 

  

 

 

The next table shows the comparative difference between a side scan that has left our 
current segmentation pipeline and one that is refined with the PSPCascade method.  
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Table 7-2: This table compares the result before and after refinement, for the side 
pose. 

Original PSPCascade Comments 

 
 

 

  

 

 
 

Notice how an error in the 
original segmentation 
propagates in this case to 
the refined image as well. 

 

7.3.1 Segmentation Problems 

As you can see in the previous two tables, while this method provides a significant 
performance boost, it does introduce certain problems. We ran this method on several 
datasets and noticed that we needed to further improve the refinement step. Due to 
privacy, we cannot share any images taken by customers. The area around the feet seems 
to be a “problem” area. As a recent addition to our scanning technique we introduced a 
new mat which already has feet placed upon it. It seems the network confuses those fake 
placeholders for real feet.  

Other problems included false positive pixels, which were segmented fine in the original 
input segmentation but almost always went outside of the contour of the person. In tacking 
these problems, we will introduce several post-processing steps in order for this method 
to be usable in production. 

7.3.2 Integration 

The CascadePSP network has a very “slow” inference time. Depending on whether only 
the global or also the local optimization is used. Not only that but uploading two 4K-scans 
to our services is highly dependent on the available internet connection and bandwidth. In 
order for us to deploy this model to production we opted for GPU-based inference on AWS.  
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7.4  Conclusion 

In this chapter 7, we started with laying out several problems related to high resolution 
segmentation. A trade-off between bandwidth, speed and user experience has to be 
made. An internal proof of concept (PoC) was made as part of the eTryOn project. This 
PoC significantly changed several of our backend services towards a microservice 
approach. Moreover, a refinement step was added after our current segmentation. This 
refinement step greatly increases the edge accuracy of current segmentation.  
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8 Software Development Kit 

8.1 Introduction 

In this chapter, we first take a look at how the QuantaCorp scanning module will be 
integrated in the eTryOn architecture. Next, we take a look at the API clients and finally 
we go over the scan component. 

8.2 Architecture 

The description of work package 1 task T1.4 describes the intent to expand on 
QuantaCorp's existing mobile scanning application for the eTryOn project so as to enable 
people to take their own scans. One option is to create a standalone application that will 
handle the scanning. However, in order to allow for a frictionless interaction of the users 
with the eTryOn applications, we will focus on the development of a software development 
kit, which can be integrated directly in the eTryOn apps. 

The main reason why the SDK approach is the better choice here, is the fact that a single 
scanning application does not fit in all of the use cases. Depending on the use case, the 
users may not always be scanning themselves, as explained in the paragraphs below. 
The SDK will allow the eTryOn application developers to integrate our scanning interface 
into their own apps, making the need for a separate scanning application obsolete. By 
removing the separate scanning application, and implementing an SDK, we reduce the 
complexity of the eTryOn architecture for both the developers and the end-users. 

In use case 1 there is a focus on garment designers. It requires the development of a 
virtual reality (VR) application in which designers can see how clothes fit on their models, 
the VR Designer app. The VR application will be developed in Unity and will require a VR 
headset to operate. To populate the VR Designer application with garments and 3D 
models, a separate back-end application is required. The VR Designer Backoffice 
application will be a web application developed in ReactJS. In this use case the designer 
will use the SDK's scanning component integrated into the web application to create 3D 
models of their size models, not of themselves. 

Use case 2 is focused on influencers. A second web application, the Dress Me Up app, 
will allow users to upload a short video of themselves and in return get that same video 
with a digital garment simulated on top of the user's body. This web application will also 
be developed in ReactJS. Before they can upload a video, the influencers will have to 
digitise themselves using the integrated scan component of the SDK. 

For use case 3, a mobile application will be developed for the fashion consumer, i.e. the 
Magic Mirror app. The mobile application will allow users to virtually dress themselves. 
Just like in use case 2, users will be digitising themselves with the scan component of the 
SDK before they can use the eTryOn applications core functionality. The app will be 
developed in Unity and will initially target the Apple platform, due to the lack of support for 
3D body tracking on Android (see deliverable D5.1). 

Given all the use cases above, we will be developing an SDK that will contain the scan 
component and a wrapper for the QuantaCorp API for every platform used by the eTryOn 
project. For ReactJS this means we will develop in JavaScript or a sibling programming 
language like ES6 or TypeScript, and deliver the scan interface as a React component. 
For Unity, SDK development is done in the native programming language of the targeted 
platform. During the export of the Unity-developed application as a mobile application, the 
entire project is turned into a project in the native development language of the targeted 
platform. In use case 3, the output of the Unity export will be an XCode project for the 
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Apple mobile applications. This means the SDK components for iOS and iPadOs will be 
developed in the Objective-C programming language and the scan component will be a 
UIViewController. Should we expand to Android devices in the future, the SDK would need 
additions in the Java programming language. 

In conclusion the SDK will contain per platform two components (a) the API clients, a 
wrapper for the QuantaCorp API in the native development language of the platform and 
(b) a scan interface in the platform's most commonly used UI component. The SDK will 
also include sample code and documentation. At QuantaCorp, we have the most 
experience in iOS development. The JavaScript components however form a new 
challenge. Up until now, even though we have a proof of concept using web technologies, 
this has never been tested in our production environment. We may run into restrictions 
where we will not be able to extract enough information from the camera (camera intrinsics 
for example) in order to guarantee the same accuracy as we do in native applications. 
Should we encounter such issues, it will take some time to introduce the extra features 
required to extract that information from the camera. Such extra features may include 
adding a calibration step in the SDK or creating a list of supported devices. In figure 8.1 
we give an overview of the SDK and indicate with colour coding the risk involved. 

 

 

Figure 8-1: Software Development Kit components risk assessment.  
The green colour indicates QuantaCorp sees no risk for implementation. 

The yellow colour indicates QuantaCorp sees risk for implementation. 
The grey colour indicates QuantaCorp has not looked into implementation risks. 

8.3 API Clients 

The SDK's API Clients are HTTPS clients for the QuantaCorp API endpoints in the native 
development language for a given platform. By providing these wrappers, third party 
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developers save precious time not having to go over the details of the QuantaCorp API 
documentation and not having to write their own HTTPS clients. 

In the eTryOn project, the number of API Clients is fairly limited. The only endpoints that 
require wrapping are the ones related to creating a scan and this actually boils down to a 
single POST request, which is custom made for eTryOn.  

As mentioned in chapter 3, we work on a fork of our existing platform for the entirety of 
the eTryOn project. For the project, we will be adding a new endpoint to our public API. 
The new endpoint is a POST request for the creation of a new scan resource but 
specifically for eTryOn. What is different in this call compared to our regular scan POST 
request, is the addition to the request body of signed URLs and a JSON Web Token (JWT) 
to verify the authenticity of the caller. With the JWT the QuantaCorp Cloud can verify the 
authenticity of the caller with the eTryOn Cloud and the signed URLs are used to upload 
the 3D model and a thumbnail image to the eTryOn Firebase Cloud Storage.  

To better understand the communication between the eTryOn application, the 
QuantaCorp Cloud and the eTryOn Cloud we will briefly go over the eTryOn pipeline. 

Every eTryOn application will authenticate their users using Firebase Authentication. 
Once a user is logged in, he or she can start creating an avatar by requesting the eTryOn 
app to present the scan component. To show the scan component of the QuantaCorp 
SDK, the eTryOn app first instantiates a new scan component. How the scan component 
works will be discussed in section 8.4, for now it suffices to know that the scan component 
will capture the images necessary for a scan upload, and it also generates the metadata 
required for that upload. Once the pictures are captured and the metadata is generated, 
the scan component returns this data to the eTryOn application. Next, the eTryOn 
application generates a JWT for user authentication and validation and it generates two 
signed URLs, one for the 3D model and one for a thumbnail. The eTryOn application then 
forwards the data it received from the scan component, along with the signed URLs and 
the JWT to the SDK's API Client responsible for the creation of a new scan resource for 
eTryOn. The upload will happen asynchronously and through pub/sub the eTryOn 
application will be kept in the loop on the upload progress. Once the scan is uploaded, the 
QuantaCorp API will first use the JWT to validate if the caller is an authentic eTryOn user. 
On a negative validation, the request is discarded. On a positive validation, the public API 
forwards the images to the segmentation server. The generated silhouettes are then sent 
to the matching server, along with the colour images and the metadata. Once the matching 
is complete, a 3D model is generated and gets uploaded to the eTryOn Cloud Storage 
using the signed URL destined for the model. Finally, a thumbnail image is generated, and 
gets uploaded using the signed URL destined for the thumbnail. 

That concludes QuantaCorp's part in the eTryOn pipeline. The eTryOn Cloud will have a 
Cloud Function running that checks for new file uploads and will automatically trigger the 
next step in the eTryOn pipeline.  

8.4 Scan Component 

The scan component of the QuantaCorp SDK is responsible for the capture of all the data 
required to generate a 3D model. 

The first thing the implementer of the QuantaCorp SDK has to do after the scan component 
is instantiated, is initialisation of the scan component with the data it is unable to capture. 
During the initialisation of the scan component, all required data is sent to the scan 
component. The data then gets validated. Should there be data missing, the scan 
component will prompt the user for this data when it is presented. So possibly, the first 
view shown to the user is a view that requests all required information. Currently, the 
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required data that cannot be captured by the scan component itself is the height of the 
person. In the future we may require additional data such as gender or weight. 

After all required data is received, the user will be shown introductory pages. These pages 
will explain how to use the scan interface as succinctly as possible. The instructions could 
be displayed in the form of short video clips or well-designed graphics. The user will be 
given the option to skip these pages, because we should not force this on the user every 
time he/she takes a scan. Using a local setting we will remember if the user prefers to skip 
seeing the introductory pages or not. The user will be able to consult the introduction 
pages again if needed from within the scan interface. 

After the introduction, the user will land on the scan interface. The scan interface will most 
likely feature some sort of silhouette in which the user has to fit the model. For right now, 
besides a silhouette we also expect to see some visualisation of the device tilt. We want 
to make sure the user is holding his/her smartphone in an upright position when capturing 
the photos. Once both pictures are taken, the data together with the captured metadata 
are sent to the implementer of the QuantaCorp SDK. What happens next is described in 
the previous section 8.3. 
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9 Conclusions 

In this deliverable we showed some of the issues with our current body space in relation 
to the 3D model's appearance. We explained that the conclusions drawn from the various 
artefacts and missing level of detail put us on the path of evaluating our existing body 
space. We also discussed an approach to generate a photo-like texture to give our 3D 
models a photorealistic appearance, but explained why this approach was let down, in 
favour of an artistic-interpretation of photorealism.  

Further in the document, we explained the weaknesses of our current body space. These 
problems were illustrated in detail with corresponding figures. It was decided that 
improving the current body space would be too costly and too time consuming to get done 
within the eTryOn project. Alternatives were looked at, like SMPL and STAR. We moved 
forward by testing, implementing and evaluating the STAR-model. Several different 
matching algorithms were also implemented and evaluated. The STAR-model shows 
promising results both in measurement accuracy and visual fidelity. As a result, it was 
decided to proceed with the STAR-model for the eTryOn project. 

In chapters 6 and 7, the importance of accurate segmentation was brought forward. Within 
the scope of the eTryOn project the current method was evaluated and we concluded that 
our method is sensitive to big deviations in segmentation. Thus, it was decided to improve 
our current segmentation pipeline. Given the progress in the state of the art in terms of 
refinement, we decided to implement a refinement step to complement our existing 
segmentation. This method was then evaluated and significantly improved the results. If 
high-resolution images are available, refinement will be applied. 

In chapter 8 we presented the SDK and where it fits in the eTryOn project. We decided 
the SDK will contain a scan component and QuantaCorp API wrapper for every supported 
platform by eTryOn. We explained how the SDK, the QuantaCorp Cloud and the eTryOn 
Cloud communicate with one another. We discussed how the scanning component will 
work and gave an idea of what it will look like. 
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