
VICTOR: VISUAL INCOMPATIBILITY DETECTION WITH
TRANSFORMERS AND FASHION-SPECIFIC CONTRASTIVE

PRE-TRAINING

A PREPRINT

Stefanos-Iordanis Papadopoulos
CERTH-ITI

stefpapad@iti.gr

Christos Koutlis
CERTH-ITI

ckoutlis@iti.gr

Symeon Papadopoulos
CERTH-ITI

papadop@iti.gr

Ioannis Kompatsiaris
CERTH-ITI
ikom@iti.gr

ABSTRACT

In order to consider fashion outfits as aesthetically pleasing, the garments that constitute them need
to be compatible in terms of visual aspects, such as style, category and color. With the advent and
omnipresence of computer vision deep learning models, increased interest has also emerged for the
task of visual compatibility detection with the aim to develop quality fashion outfit recommendation
systems. Previous works have defined visual compatibility as a binary classification task with items
in a garment being considered as fully compatible or fully incompatible. However, this is not
applicable to Outfit Maker applications where users create their own outfits and need to know which
specific items may be incompatible with the rest of the outfit. To address this, we propose the Visual
InCompatibility TransfORmer (VICTOR) that is optimized for two tasks: 1) overall compatibility as
regression and 2) the detection of mismatching items. Unlike previous works that either rely on feature
extraction from ImageNet-pretrained models or by end-to-end fine tuning, we utilize fashion-specific
contrastive language-image pre-training for fine tuning computer vision neural networks on fashion
imagery. Moreover, we build upon the Polyvore outfit benchmark to generate partially mismatching
outfits, creating a new dataset termed Polyvore-MISFITs, that is used to train VICTOR. A series of
ablation and comparative analyses show that the proposed architecture can compete and even surpass
the current state-of-the-art on Polyvore datasets while reducing the instance-wise floating operations
by 88%, striking a balance between high performance and efficiency.

Keywords Recommendation System · Outfit Matching · Visual Compatibility · Computer Vision · Deep Learning

1 Introduction

Fashion products do not exist in a vacuum. When customers consider buying a new garment they may contemplate its
subjective appeal, price, quality or trendiness but also think of ways to match it with other pieces and how compatible it
is with other items in their wardrobe. To help customers in their endeavours, contemporary e-commerce applications
usually provide outfit recommendations and suggestions of how to “complete the look” based on an item of interest.
Outfit compatibility is a rather challenging task: not only is it highly subjective but it also involves numerous variables
such as the style, color, fit, patterns, proportions, textures of numerous garments and how these aspects interrelate.
To this end, researchers have recently utilized computer vision neural networks, that learn to produce informative
representations from fashion images, along with pairwise-based [Tan et al., 2019, Vasileva et al., 2018], graph-based
[Cucurull et al., 2019, Cui et al., 2019] or attention-based neural networks [Zhan and Lin, 2021, Zhan et al., 2021, Chen
et al., 2019] that learn to predict the compatibility of outfits.

However, previous studies define outfit compatibility prediction as a binary (OCb) classification task. An outfit is either
fully compatible or fully incompatible. This is a reasonable assumption for e-commerce applications that recommend
fully compatible outfits to their customers. It is not as applicable to Outfit Maker applications1, where users combine

1Examples of outfit maker applications include: ShopLook, Smart Closet, Stylebook, Pureple and Combyne
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garments to create their own outfits. Instead, it would be more useful to offer an overall compatibility score and detect
specific mismatching garments in order to inform users which items are not compatible with the rest of the outfit. This
would give a sense of how aesthetically pleasing an outfit is and help users identify garments with clashing colors or
patterns, select more suitable alternatives and generally fine-tune their outfits.

In this study we define outfit compatibility as a regression (OCr) problem and also address the task of mismatching
item detection (MID) in fashion outfits. We use the Polyvore outfit dataset [Vasileva et al., 2018] which consists
of fully compatible and incompatible outfits to generate partially mismatching outfits (MISFITs). We propose the
Visual InCompatibility TransfORmer, or VICTOR, a multi-tasking, Transformer-based architecture that is trained to
predict the overall OCr score and detect mismatching garments in an outfit. Previous works on OCb either rely on
feature extraction from computer vision models pre-trained on ImageNet[Chen et al., 2019, Lorbert et al., 2021] or
end-to-end fine-tuning [Han et al., 2017, Vasileva et al., 2018, Lin et al., 2020, Tan et al., 2019, Sarkar et al., 2022].
When using visual features from ImageNet-pretrained models, VICTOR outperforms other methods by 4.87% in terms
of AUC on the Polyvore dataset. On the other hand, E2E fine-tuning tends to significantly outperform feature extraction
but is notably more resource intensive. Instead, we utilize fashion-specific contrastive language image pre-training
(FLIP) to fine-tune computer vision models for fashion imagery and then use the extracted visual features for OCr

and MID. Empirical results show that VICTOR with FLIP are capable of competing and even surpassing, the current
state-of-the-art on Polyvore datasets for OCb while reducing instance-wise floating point operations (FLOPs) by an
impressive 88%.

The main contributions of our work are:

• We define two new sub-tasks for visual compatibility, namely: outfit compatibility prediction as regression
(OCr) and mismatching item detection (MID) and examine them in the domain of Fashion with the proposed
multi-tasking Transformer-based neural network that is optimized for both tasks.

• We propose a methodology for generating partially mismatching outfits and create a new dataset called
Polyvore-MISFITs. We provide the code2 that generates the Polyvore-MISFITs dataset in order to encourage
further research in the field.

• We utilize fashion-specific contrastive language image pre-training (FLIP) for fine-tuning computer vision
neural networks on fashion imagery. We experiment with four computer vision backbones and perform an
extensive ablation and comparative analysis that shows VICTOR with FLIP to be capable of competing and
even surpassing the current state-of-the-art on Polyvore datasets while reducing instance-wise floating point
operations by 88% and total study-wise operations by up to 98%.

2 Related Work

In recent years, researchers have shown increased interest in applying deep learning and computer vision neural
networks [Cheng et al., 2021] in order to address numerous tasks relevant for the Fashion domain including category
and attribute classification [Liu et al., 2016, Papadopoulos et al., 2022a], trend forecasting [Al-Halah et al., 2017,
Mall et al., 2019], popularity prediction [Skenderi et al., 2021, Papadopoulos et al., 2022b], fashion recommendations
systems [Hwangbo et al., 2018, Stefani et al., 2019] and among them, the task of outfit recommendations. In order
to recommend complete outfits it is first necessary to understand which garments go well together and can create
compatible and cohesive outfits.

The first studies to address the task, considered outfit compatibility as a series of pairwise comparisons between all
comprising garments [Tan et al., 2019, Vasileva et al., 2018]. Pairwise-based approaches have utilized Siamese [Veit
et al., 2015] and triplet loss networks with either type-aware embeddings [Vasileva et al., 2018] or similarity-aware
embeddings [Tan et al., 2019]. Other works, instead of aggregating garment-level relations attempted to capture global
outfit-level representations with the use of bidirectional LSTMs [Han et al., 2017] or graph neural networks [Cucurull
et al., 2019, Cui et al., 2019]. In practice, outfits are not ordered sequences; the order of the garments should not affect
the model’s predictions. Thus, recurrent neural networks are not the most suitable architecture for the task. On the other
hand, graph-based approaches tend to require large “neighborhoods” of compatible garment-nodes as input in order to
reach optimal performance which is problematic for new items that lack neighbor information and may straggle from
the cold start problem [Lin et al., 2020].

In order to address the aforementioned challenges, more recent works have employed attention-based methods [Zhan
and Lin, 2021, Zhan et al., 2021, Chen et al., 2019]. Attention mechanisms have been used in pairwise-based approaches
[Lin et al., 2020, Taraviya et al., 2021] but the Transformer architecture has been successfully used for personalised

2The GitHub repository will be provided upon acceptance of the paper.
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outfit recommendations [Chen et al., 2019] and complementary item retrieval [Sarkar et al., 2022]. With the use
of multi-head attention, the Transformer is suitable for learning relations between multiple items, in this case the
compatibility between all garments in an outfit. Additionally, by removing the positional encoding [Vaswani et al.,
2017, Dosovitskiy et al., 2020] it can capture unordered relations between all garments.

However, all aforementioned studies have defined outfit compatibility as a binary classification problem. An outfit is
treated as either fully compatible or fully incompatible. To the best of our knowledge, this is the first study to tackle the
task of mismatching item detection (MID) and treat compatibility prediction as a regression (OCr) instead of a binary
task (OCb).

Previous works have relied on visual, textual information and fashion categories for creating representations of garments
in outfits. Transfer learning is generally being used for extracting visual information from the garment’s images, either
with feature extraction (FX) from ImageNet pretrained models [Chen et al., 2019, Lorbert et al., 2021] or by end-to-end
fine-tuning (E2E) for OCb [Han et al., 2017, Vasileva et al., 2018, Lin et al., 2020, Tan et al., 2019, Sarkar et al., 2022].
E2E tends to outperform FX-ImageNet since the visual features are trained to specialize on the target domain and task.
Nevertheless, E2E is a highly resource intensive process since the gradients of a - usually large - network backbone need
to be updated on top of the outfit matching neural network. In this study, we attempt to find the middle ground between
the efficiency of FX and the high accuracy of E2E by utilizing contrastive language-image pre-training - inspired by
[Radford et al., 2021] - with a focus on fashion imagery.

3 Methodology

3.1 Problem Formulation

In this study, we address the task of mismatching item detection (MID) in fashion outfits. Moreover, we define visual
outfit compatibility prediction as a regression task (OCr) - allowing for partially mismatching outfits - in contrast to
previous studies that define it as a binary classification task (OCb). Let a fashion outfit O = {g1, g2, . . . , gn} consist
of n garments gi. Our architecture after processing the outfit images, I = {I(g1), I(g2), . . . , I(gn)}, produces n+ 1
outputs, one for the OCr task denoted YOCr

∈ (0, 1) ⊂ R and n for the MID task denoted YMID ∈ (0, 1)n ⊂ Rn,
which are optimized to comply with the corresponding target variables, TOCr

and TMID. First, TOCr
∈ (0, 1) ⊂ R

denotes the compatibility of the garments, where 0 means that all garments are incompatible, 1 that all are compatible
and in-between values denote partial compatibility. Second, a list of binary values TMID = [xg1 , xg2 , . . . , xgn ], with
xgi ∈ {0, 1} and i = 1, . . . , n, where 1 denotes the mismatching garments in outfit O. OCr is defined as a regression
task and MID as a multi-label classification task.

3.2 Generating Mismatching Outfits

Existing outfit datasets, e.g. Polyvore [Vasileva et al., 2018], provide annotations for fully compatible or fully
incompatible outfits. In this study we attempt to address partial incompatibility and the detection of specific mismatching
items within an outfit. To this end, we generate partially mismatching outfits (MISFITs) with the following method.
For every matching outfit O, with n > 2 we generate m number of MISFITs by randomly selecting (i) the number of
garments 1 ≤ r ≤ n− 2 that will be replaced and (ii) their positions P . The garments in positions P are then replaced
with randomly selected items of the same category, thus generating hard negative samples. Hard negative sampling
forces the model to recognize and focus on fine-grained characteristics of the garments and their interrelations. In
contrast, sampling garments from different categories would be easier for the model to recognize but it would learn
less useful relations [Vasileva et al., 2018], for example that an outfit can not consist of two dresses or two pairs of
shoes. For O with n = 3 we only allow r = 1 because having outfits with only 1 compatible item is invalid. The target
compatibility score is calculated as TOCr

= 1 − r/n and the mismatching items target is defined as a list TMID of
binary values with 1 in P positions denoting the incompatible garments and 0 in other positions denoting the compatible
garments. The fully compatible outfits retain TOCr

= 1 and TMID = [0, 0, . . . , 0], while the fully incompatible ones
TOCr

= 0 and TMID = [1, 1, . . . , 1], respectively.

3.3 VICTOR

The proposed pipeline of the Visual InCompatibility TransfORmer (VICTOR) is illustrated in Fig. 1. First, the images
I = {I(g1), I(g2), . . . , I(gn)} of all garments in an outfit O are passed through a visual encoder EV(·) that produces
the corresponding vector representations vgi ∈ Re×1, where e is the encoder’s embedding dimension. Then, following
Dosovitskiy et al. [2020] that makes use of a classification token (CLS) we similarly consider a regression token

3
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(REG)3 and pass {vgi}ni=1 ∪ {< REG >} through a Transformer decoder4 D(·). Outfits are not sequential objects
thus we do not make use of positional encodings [Vaswani et al., 2017, Dosovitskiy et al., 2020] so as to capture the
unordered relations between garments. The Transformer decoder D(·) consists of L layers that have h attention heads
of embedding dimension d. Finally, the OCr score YOCr

and the MID scores list YMID of the outfit are calculated as:

vgi = EV(I(gi))

dgi = D(vgi)

d<REG> = D(< REG >)

YOCr
= W1 · GELU(W0 · LN(d<REG>))

YMID[i] = Wi · GELU(LN(dgi))

where dgi ∈ Rd×1 and d<REG> ∈ Rd×1 are the Transformer’s outputs, W0 ∈ R e
2×d, W1 ∈ R1× e

2 and Wi ∈ R1×d

are sigmoid activated dense projection layers (learnable bias terms are considered but omitted here for clarity), LN
stands for Layer Normalization and GELU is the activation function. Zero padding is also considered for D(·) input in
outfits with less than 19 items being the largest outfit size in Polyvore.

Figure 1: Workflow of the VICTOR architecture.

D(·) utilizes multi-head attention, thus each token contains information about a garment’s interrelations with all other
garments. In our case this translates to an item being mismatching with the rest of the items in the outfit. Sarkar
et al. [2022] proposed the use of the CLS token for predicting the overall compatibility of the outfit. However, after
experimentation, we found this to be sub-optimal for the MID task and our architectural approach to perform consistently
better. VICTOR is optimized based on two different loss functions. YOCr - being a regression task - is optimized based
on the mean squared error loss function (LMSE), while YMID - being a multi-label classification task - is optimized
based on the binary cross entropy (LBCE) loss, ignoring the zero padded items. However, the two loss functions do
not necessarily have balanced values. We therefore introduce α, a hyper-parameter for weighted combination of the
two loss functions as a standard multi-objective optimization practice. The final loss for VICTOR is calculated as
L = LMSE + LBCE · α.

3.4 Fashion-specific language image pre-training (FLIP)

Analysing the visual compatibility of fashion items requires the use of computer vision neural networks for producing
informative representations of said items. Unlike previous works that have utilized feature extraction from ImageNet-
pretrained models or end-to-end fine-tuning, we propose the use of contrastive language-image pre-training for fashion
imagery (FLIP). FLIP’s workflow is illustrated in Fig. 2 and is following the training procedure proposed by Radford
et al. [2021]. FLIP consists of one visual EV(·) and one textual ET(·) encoder. Image-text pairs (I(gi), T (gi)) are passed
through their respective encoders and the resulting embeddings are projected onto the same embedding space with the
use of two fully connected layers of the same size one for each encoder, as shown below:

FV(i) = WV · EV(I(gi))

FT(i) = WT · ET(T (gi))

The dot product between image and text projection embeddings are calculated and the loss function is defined as
the mean cross entropy between the predicted and the target image-text pairs, the latter being reflected by the main
diagonal. Our rationale for utilizing FLIP is that it balances performance and efficiency. Training computer vision

3A trainable vector that learns a global representation incorporating information about the relations of all garments in an outfit.
4D(·) is actually structured as the encoder part of the original Transformer architecture but we use it to decode the image

embeddings in our model thus we call it a decoder herein.
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models end-to-end for outfit compatibility can yield a high performance but is a rather resource intensive process. On
the other hand, ImageNet-pretrained models do not specialise on fashion imagery and can only produce a general visual
representation. In contrast, the visual encoder of FLIP will learn to produce fashion-specific features. FLIP does not
require annotated fashion datasets, which are expensive and time consuming to produce, instead it relies on image-texts
pairs of existing fashion products which are easier to attain. Moreover, we may train a single FLIP model, extract
the visual features from fashion imagery and re-use them for numerous experiments on outfit compatibility, such as
hyper-parameter tuning and ablation analyses, without requiring e2e fine-tuning. Thus, significantly reducing floating
point operations (FLOPs) and by extension computational costs and training time.

Figure 2: Workflow of fashion language-image pre-training (FLIP). FLIP consists of a visual and a textual encoder that
are trained contrastively to predict the correct image-text pair which are placed in the main diagonal. Images and texts
are selected with in-batch sampling.

4 Experimental Setup

4.1 Polyvore Dataset

The Polyvore dataset is a widely used benchmark dataset for outfit recommendation that was collected by Vasileva et al.
[2018]. The dataset provides 68,306 matching outfits comprising 251,008 unique garments. Each garment comes with
multi-modal information including an image, product name, description and associated fashion categories consisting
of 14 types and 142 categories including bottoms: “skirt”, “long skirt”, tops: “sweater”, “turtleneck sweater”, shoes:
“boots”, “flat sandals” but also hats, jewelry and other accessories. For every matching outfit the authors have generated
an equal amount of fully incompatible outfits by randomly replacing each garments with items of the same category.
The dataset comes in two versions that have fixed training, validation and testing splits. The first version of Polyvore
consists of 106,612, 10,000, 20,000 outfits for training, validation and testing respectively. There are no overlapping
outfits between the different splits but garments can overlap between the splits. The second version, Polyvore-Disjoint,
consists of 33,990, 6,000, 30,290 outfits for training, validation and testing but there are no overlapping garments
between the splits. Each outfit has at least 2, a maximum of 19 and a median value of 5 garments. As the target variable
TOCb

, fully compatible outfits have a score of 1 while fully incompatible have 0.
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Outfits with more than 10 garments make up less than 0.5% of all outfits and could therefore be considered outliers.
Moreover, we found that outfits with more than 10 garments often have more than one garment of the same category
e.g. two pants or two jackets, which is infeasible. However, we do not filter anything out so as to ensure comparability
with previous works.

4.2 Polyvore-MISFITs Dataset

We apply the MISFIT generation process described in section 3.2 on the Polyvore dataset for m = 2 and m = 4. m = 2
creates a balanced dataset between the initial and the generated outfits, with 133,944 MISFITs out of the 270,556
in total which are distributed into 104,498, 9,794, 19,652 for training, validation and testing while m = 4 generates
267,888 MISFITs with a total of 404,500 outfits which are split into 315,608, 29,588, 59,304.

Figure 3: Examples of generated MISFITs from fully compatible outfits. Red frames denote the mismatching items.

Fig. 3 presents two indicative examples of generated MISFITs. On top there are two women’s outfits of different styles
which are annotated as matching. On the left, a classic monochromatic look with a loose fit and on the right a casual
look with black pieces and blue jeans. The MISFIT generation process has randomly replaced certain garments of
the original outfit with items of the same category. For example, the beige pair of wide-fitting pants is replaced with
leopard-print leggings (item 3, row 1) and the leather jacket (right outfit) is replaced with a colorful Aztec-pattern jacket
(item 6, row 1). These, like most replaced garments, are not matching the aesthetic and style of the initial outfit. Thus,
they are correctly categorised as mismatching items. However, the generation process is not perfect. For example, the
pair of beige loafers is replaced with a beige pair of heels (item 1, row 4, left outfit) which some would not consider it
to be mismatching with the rest of the outfit. The replacement process is random, thus, replacement items may match
by chance. However, since each category contains thousands of items, we expect that random selections will more

6
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often than not lead to incompatible combinations. We provide the code5 for generating the Polyvore-MISFITs for
reproducibility and in order to encourage further research in the field.

4.3 Implementation Details

We perform an ablation and comparative analysis and in order to distinguish different versions of VICTOR, we
denote the training task in square brackets. The proposed multi-tasking learning (MTL) model optimized both for
OCr and MID is referred to as VICTOR[MTL]. Furthermore, we define: (1) VICTOR[OCb] trained only for binary
outfit compatibility, optimized based on the binary cross entropy loss function, (2) VICTOR[OCr] trained only for
compatibility as regression optimized based on on the MSE loss function and (3) VICTOR[MID] trained only for
mismatching item detection, optimized based on the multi-label binary cross entropy loss function. For all versions
of VICTOR, we select L = 8 transformer layers of d = 64 dimensions, h = 16 attention heads, a dropout rate of 0.2
and a batch size of 512. We train VICTOR[MTL] four times with α ∈ [0.2, 0.5, 1, 2] and denote different values of
α as VICTOR[MTL;α]. Wherever required, we also denote the version of Polyvore-MISFITs that was used to train
VICTOR as VICTOR[MTL;α;m].

We use the image-text pairs from the Polyvore-Disjoint dataset for training FLIP since there is no overlap between
training, validation and testing sets. For FLIP’s visual encoder EV, we experiment with four models 1) ResNet18 [He
et al., 2016], 2) EfficientNetV2-B3 [Tan and Le, 2021], 3) MLP-Mixer B/16 [Tolstikhin et al., 2021] and ViT B/32
[Dosovitskiy et al., 2020]. The aformentioned models are taken from the timm library6 and are initially pre-trained on
ImageNet. The input image sizes are 224 for all models expect EfficientNetV2-B3 which is 300. For FLIP’s textual
encoder ET, we use CLIP’s Transformer text encoder and do not fine-tune it any further. We select a projection layer of
512 and a batch size of 32 for FLIP.

We train both FLIP and VICTOR for 20 epochs with the Adam optimizer and a learning rate scheduler with an initial
learning rate of 1e-4 that reduces by a rate of 0.1 at 10 epochs.

Regarding the evaluation protocol, we follow all previous works that use the area under the roc curve (AUC) as the
evaluation metrics for OCb. For OCr we report the mean absolute error (MAE) and for MID the binary accuracy and
exact match. We use the training, validation and testing sets as provided by the Polyvore dataset in order to ensure fair
comparability. We checkpoint the network’s parameters with TOPSIS [Hwang and Yoon, 1981] based on the validation
MAE, binary accuracy and exact match.

5 Results

5.1 FLIP and FLOPs

We fine-tune four computer vision neural networks for fashion imagery with the use of fashion language-image pre-
training (FLIP). Their performance in terms of the cross entropy loss can be seen in Table 1. Lower values of cross
entropy loss translates into fewer mistakes when matching the visual and textual projections of actual image-text pairs.
However, lower cross entropy loss may not necessarily translate into better performance for VICTOR. Our rationale for
employing FLIP was to fine-tune the models on fashion imagery while avoiding end-to-end (E2E) fine-tuning for outfit
compatibility which can be considerably resource-intensive.

To measure the efficiency gains of FLIP, we calculate the number of floating point operations (FLOPs) using Facebook’s
fvcore7. Table 2 presents the FLOPs of each computer vision model for a single instance of training. We observe
that employing FLIP and then utilizing the extracted visual features to train VICTOR reduces the number of FLOPs
by an average of 88.14% compared to E2E training. Moreover, if we not only consider instance-wise FLOPs but
also epoch-wise FLOPs there is an average decrease of up to 94.86%. This is due to FLIP being trained on the
Polyvore-Disjoint dataset (86,624 training+validation instances) - but is then also used for Polyvore - compared to
the Polyvore’s 202,446 training+validation instances. Furthermore, we should also consider the re-usability of FLIP,
meaning that a FLIP model can be trained once but its extracted features can then be re-used with no additional cost. In
our study, we run 12 experiments per computer vision model, for the ablation study and the tuning of α. Compared to
using standard E2E training within the same experimental setup, we have actually reduced the number of FLOPs by an
impressive average of 98.81%. Utilizing FLIP proved to be significantly more efficient than conventional E2E training
for outfit compatibility prediction.

5The GitHub repository will be provided upon acceptance of the paper.
6https://github.com/rwightman/pytorch-image-models
7https://github.com/facebookresearch/fvcore
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Table 1: Performance of computer vision models fine-tuned with FLIP in terms of the cross entropy loss.
Model Cross entropy loss (↓)

ViT B/32 1.27
ResNet18 1.23

MLP-Mixer B/16 1.21
EfficientNetV2-B3 1.07

Table 2: Floating-point operations (FLOPs) of VICTOR when trained with FLIP or end-to-end (E2E) fine-tuning with
different computer vision models.

Model Model Parameters FLIP VICTOR FLIP + VICTOR VICTOR (E2E) % ↓
ResNet18 1.14E+07 5.36E+09 1.82E+08 5.54E+09 4.55E+10 87.8
EfficientNetV2-B3 1.30E+07 6.07E+09 1.55E+09 7.63E+09 6.02E+10 87.3
MLP-Mixer B/16 5.93E+07 7.31E+09 4.00E+08 7.71E+09 2.40E+11 96.8
ViT B/32 8.76E+07 1.56E+10 4.00E+08 1.60E+10 8.26E+10 80.62

5.2 Ablation Analysis

We perform an ablation analysis comparing the proposed multi-tasking VICTOR[MTL] with its two separate com-
ponents, VICTOR[OCr] and VICTOR[MID]. The results are shown in Table 3. For VICTOR we tune the α hyper-
parameter - the weight that combines the two loss functions - and report the best performing based on TOPSIS which
takes into account MAE, exact match and binary accuracy. VICTOR[OCr] is only trained for compatibility prediction
as regression and can not detect specific mismatching items. Being specialised on OCr, it yields an average MAE of
0.255 for m = 2 and 0.225 for m = 4. VICTOR[MTL] performs marginally better with 0.250 for m = 2 and 0.219 for
m = 4. The overall lowest, hence better, MAE scores are reached by VICTOR[MTL] with MLP-Mixer B/16 and ViT
B/32 for m = 2 and m = 4 respectively.

VICTOR[MID] is trained on predicting mismatching items in outfits and yields on average a binary accuracy of
71.46% for m = 2 and 70.19% for m = 4, closely followed by VICTOR[MTL] which has 70.14% and 68.8%
respectively. In terms of the exact match evaluation metric, the strictest evaluation metric for the MID task, we observe
that VICTOR[MTL] significantly outperform VICTOR[MID] with 40.65% compared to 37.80% for m = 2 while they

Table 3: Ablation analysis between VICTOR[OCr], VICTOR[MID] and VICTOR[MTL] on Polyvore-MISFITs dataset
with m = 2 and m = 4. For VICTOR[MTL] we report the best performing α = a|b based on TOPSIS with a for
m = 2 and b for m = 4.

VICTOR FLIP Model MAE (↓) Exact Match (↑) Accuracy (↑) OCb AUC (↑)
m=2 m=4 m=2 m=4 m=2 m=4 m=2 m=4

VICTOR[OCr]

ResNet18 0.254 0.221 - - - - 0.90 0.90
EfficientNetV2-B3 0.255 0.226 - - - - 0.91 0.88
MLP-Mixer B/16 0.255 0.229 - - - - 0.89 0.86
ViT B/32 0.254 0.225 - - - - 0.92 0.92

Average 0.254 0.225 - - - - 0.91 0.89

VICTOR[MID]

ResNet18 - - 38.30 26.29 68.64 69.44 0.89 0.90
EfficientNetV2-B3 - - 38.50 27.52 71.99 70.29 0.91 0.90
MLP-Mixer B/16 - - 36.70 27.03 72.42 70.44 0.90 0.90
ViT B/32 - - 37.69 27.85 72.79 70.59 0.91 0.90

Average - - 37.80 27.17 71.46 70.19 0.90 0.90

VICTOR[MTL]

ResNet18 (α = 0.2|0.2) 0.257 0.224 40.70 26.02 69.35 65.75 0.90 0.90
EfficientNetV2-B3 (α = 0.2|1) 0.248 0.216 39.70 26.98 70.24 69.79 0.91 0.91
MLP-Mixer B/16 (α = 0.2|0.2) 0.247 0.222 41.55 26.15 70.57 68.98 0.92 0.91
ViT B/32 (α = 0.2|1) 0.250 0.214 40.65 27.91 70.38 70.68 0.92 0.92

Average 0.250 0.219 40.65 26.77 70.14 68.8 0.91 0.91
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Table 4: Comparison with the state-of-the-art on binary outfit compatibility prediction (OCb) in terms of AUC. For
VICTOR, we report the best performing hyper-parameter combination.

Method Input Polyvore Polyvore-D
BiLSTM + VSE [Han et al., 2017] ResNet18 (E2E) + Text 0.65 0.62
GCN (k=1) [Li et al., 2019] ResNet18 (E2E) 0.82 0.87
Li et al. [2019] ResNet18 (E2E) 0.90 0.85
SiameseNet [Vasileva et al., 2018] ResNet18 (E2E) 0.81 0.81
Type-aware [Vasileva et al., 2018] ResNet18 (E2E) + Text 0.86 0.84
SCE-Net [Tan et al., 2019] ResNet18 (E2E) + Text 0.91 -
CSA-Net [Lin et al., 2020] ResNet18 (E2E) 0.91 0.87
OutfitTranformer [Sarkar et al., 2022] ResNet18 (ImageNet) 0.82 -
OutfitTranformer [Sarkar et al., 2022] ResNet18 (E2E) 0.91 -

VICTOR[OCb]

ResNet18 (ImageNet) 0.86 0.78
EfficientNetV2-B3 (ImageNet) 0.86 0.78
MLP-Mixer B/16 (ImageNet) 0.84 0.73
ViT B/32 (ImageNet) 0.86 0.80
ResNet18 (FLIP) 0.90 0.85
EfficientNetV2-B3 (FLIP) 0.91 0.86
MLP-Mixer B/16 (FLIP) 0.91 0.86
ViT B/32 (FLIP) 0.91 0.87

VICTOR[MTL]

ResNet18 (ImageNet) 0.86 0.77
EfficientNetV2-B3 (ImageNet) 0.86 0.79
MLP-Mixer B/16 (ImageNet) 0.84 0.71
ViT B/32 (ImageNet) 0.86 0.78
ResNet18 (FLIP) 0.90 0.85
EfficientNetV2-B3 (FLIP) 0.91 0.87
MLP-Mixer B/16 (FLIP) 0.92 0.87
ViT B/32 (FLIP) 0.92 0.88

both perform similarly for m = 2, with 26.77% and 27.17% accordingly. The overall highest, hence better, exact match
scores are reached by VICTOR[MTL] with MLP-Mixer B/16 and ViT B/32 for m = 2 and m = 4 respectively.

Finally, regarding binary outfit compatibility prediction (OCb), which is evaluated in terms of AUC, we observe that
VICTOR[MTL], with 0.91/0.91 AUC on average form = 2/m = 4 respectively, slightly outperforming VICTOR[OCr]:
0.91/0.89 and MID-only Transformer: 0.90/0.90. ViT B/32 reaches the highest OCb AUC (0.92) for both m=2 and m=4
with either VICTOR[OCr] or VICTOR[MTL].

By combining OCr and MID in one model and tuning the hyper-parameter α, VICTOR[MTL] can perform consistently
well on both tasks with all computer vision models. Based on TOPSIS, the overall best performance is reached by
VICTOR[MTL;α = 0.2;m = 2] with visual features from MLP-Mixer B/16.

5.3 Comparative Analysis

The central focus of this study is the detection of mismatching items in outfits which can be considered a sub-task of
visual compatibility. We therefore compare the proposed VICTOR[MTL] with numerous state-of-the-art (SotA) models
for binary outfit compatibility prediction (OCb). The current SotA for visual-based OCb on the Polyvore dataset is held
by CSA-Net [Lin et al., 2020] and OutfitTransformer [Sarkar et al., 2022] with 0.91 AUC. When category information
are added the performance of OutfitTransformer increases to 0.92 and when texts are also added it yields 0.93 AUC.
However, these are not directly comparable with our work since we do not use category information nor texts.

Comparing the models that use pre-trained visual features on ImageNet, we observe that OutfitTransformer w/ ResNet18
(ImageNet) yields 0.82 AUC on Polyvore while our VICTOR[OCb] w/ ResNet18 (ImageNet) outperforms it with 0.86
AUC. VICTOR[OCb] exhibit a similar performance with the other three computer vision models, with an average
AUC of 0.86. Furthermore, when employing vgi from FLIP, VICTOR[OCb] w/ ResNet18 (FLIP) improves to 0.9
AUC similarly with all other computer vision models; that display an average AUC of 0.91 for Polyvore and 0.86 on
Polyvore-D. The proposed VICTOR[MTL;α = 0.2;m = 2] further improves upon VICTOR[OCb] with MLP-Mixer
B/16 and ViT B/32 FLIP models. This slight improvement may be due to YOCr forcing VICTOR[MTL] to learn deeper
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(a)

(b)

(c)

Figure 4: Inference examples from VICTOR on fully compatible outfits and their generated partially mismatching
versions. Green frames denotes compatible items while red frames denote incompatible items.

and more complicated relations compared to the simple OCb-based model. Notably, VICTOR[MTL] w/ ResNet18
(FLIP) performs at the same level as the SotA while being significantly faster and less resource-intensive to train;
requiring 94.8% fewer FLOPs. Finally, VICTOR[MTL] w/ MLP-Mixer B/16 (FLIP) or ViT B/32 (FLIP) surpasses the
vision-based SotA with 0.92 AUC on Polyvore while VICTOR[MTL] with ViT/B32 (FLIP) surpasses the SotA on
Polyvore-D with 0.88 AUC.
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5.4 Qualitative Analysis

Fig.4 illustrates a few inference examples from VICTOR[MTL;α = 0.2;m = 2] with MLP-Mixer B/16 since it
exhibited the highest exact match score. We use samples from the Polyvore MISFITs m = 2 thus there are three
fully compatible outfits and for each, there are two generated outfits containing at least one incompatible item. We
observe that VICTOR is capable of correctly identifying the fully compatible outfits in all three cases (row=1 of each
outfit). There are also cases that correctly identifies all mismatching items, row 2 and 3 of Fig. 4a and row 2 of Fig.
4b. VICTOR has presumably learned to “understand” which styles and colors of different garments can be matched
together.

Expectedly, there are also some mistaken predictions. Row 3 of Fig.4b shows that 2/6 items - while being annotated
as compatible - they are predicted to be mismatching by the model. Similarly, in row 3 of Fig. 4c the whole outfit is
predicted to be incompatible while 4/6 items are annotated as compatible. On the other hand, row 2 of Fig.4c although
the pair of dark navy shorts is annotated as mismatching with the rest of the outfit, some would consider this to be a
mistaken annotation since grey, black and navy are often paired together. VICTOR seems to have generalized well
enough so as to ignore the few rare cases of mistaken annotations.

One general challenge for the task of visual compatibility is that there is always the element of subjectivity. Moreover,
what is considered compatible differs from culture to culture and is time dependent; since fashion trends are in constant
flux. In our case, the ground truth compatible outfits reflect the subjective opinions and biases of fashion stylists from
Polyvore, creating a data-driven bias in our models. Despite this caveat, overall, VICTOR seems to produce reasonable
predictions and we believe that a larger and more diverse dataset would further improve its performance.

Finally, VICTOR does not only predict the mismatching items in an outfit but has also learned to predict the overall
compatibility of an outfit. As a result it can be used for outfit recommendation. Fig. 5 illustrates an example where
VICTOR detects two mismatching items in an outfit and given a set of candidate garments - all garments from the same
category as the mismatching items - selects the better suited alternatives, resulting in a more cohesive and aesthetically
pleasing outfit.

6 Conclusions

In this study we define two new sub-tasks within the general task of visual compatibility prediction, namely compatibility
prediction as regression and mismatching item detection and examine both in the Fashion domain. We use the Polyvore
outfits dataset to generate partially mismatching outfits (MISFITs) and create the Polyvore-MISFITs dataset where we
perform a series of ablative and comparative experiments. We propose a multi-tasking Transformer-based architecture,
named VICTOR, and utilize visual features from multiple computer vision neural networks fine-tuned with fashion-
specific contrastive language-image pre-training (FLIP). The proposed architecture outperforms other methods by
4.87% in terms of AUC on the Polyvore dataset when using visual features extracted from ImageNet-pretrained models
with no additional computational cost. Moreover, by using visual features from FLIP, VICTOR proves capable of
competing and even surpassing state-of-the-art methods on Polyvore datasets that utilize end-to-end fine-tuning while
reducing instance-wise floating point operations by 88%.

One limitation of the current study is that when generating the Polyvore-MISFITs dataset, we use random alternative
sampling. More intricate methods could be implemented that take into account the rate of similarity between the ground
truth and the selected mismatching garment. However, it is difficult to select the appropriate threshold of similarity
without input from professional stylists. Selecting too similar items - e.g a black pair of dress shoes with another -
would not result in actual mismatching outfits but selecting too dissimilar items - e.g the dress shoes with a pair of
snow boots - would lead to numerous easy-to-predict MISFITs and as a result, VICTOR would not have learned to
discern more subtle and useful cases of visual incompatibility. A second issue is that VICTOR has been trained on
images from Polyvore dataset which depicts individual garments in a white background. This may limit its application
to real-world fashion images as worn by people. However, VICTOR could very easily be integrated in a full system,
similar to [Papadopoulos et al., 2022a], that applies garment detection to real world fashion imagery and then extract
the visual features of individual garments; given that the garments are fully or mostly visible.

Our focus is centered around general visual compatibility in fashion. By relying on the Polyvore dataset VICTOR has
learned to reflect the subjective opinions and biases of fashion stylists from Polyvore. It would be interesting for future
works to re-create similar architectures that also take personalization into account [Zhan and Lin, 2021]. Finally, the
proposed VICTOR and FLIP fine-tuning are not limited to applications within the Fashion domain. Future works could
experiment with other visually-driven domains such as exterior and interior architecture design [Aggarwal et al., 2018].
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Figure 5: Example of VICTOR detecting the mismatching items in an outfit and recommending more compatible
alternatives.
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